Vector Space - Salient Points

Date-08/08/2019

1) Vector space is a composite object:

a. Vector Space
i. Scalar Field \mathbf{F}
ii. Vector Set V
iii. Operations

1. Addition of two vector objects
2. Multiplication by scalar
b. Example \mathbb{R}^{n} or \mathbb{C}^{n} with typical established laws for addition and scalar multiplication

2) Rules for vector addition operation:

For $u, v, w \in \boldsymbol{V}$

a. Commutative: $u+v=v+u$
b. Associative: $(u+v)+w=u+(v+w)$
c. Zero vector 0: $u+0=u$
d. Unique vector $-u: u+(-u)=0$
3) Rules for scalar multiplication operation:
a. $\quad 1 u=u$
b. $\left(\alpha_{1} \alpha_{2}\right) u=\alpha_{1}\left(\alpha_{2} u\right)$
c. $\alpha(u+v)=\alpha u+\alpha v$
d. $\left(\alpha_{1}+\alpha_{2}\right) u=\alpha_{1} u+\alpha_{2} u$

4) Inner product operation rules:

For $u, v, w \in \boldsymbol{V}$, and for a given rule for inner product of two vector objects u and v represented by $\langle u, v\rangle$
a. Conjugate symmetry -

$$
\langle u, v\rangle=\overline{\langle v, u\rangle}
$$

b. Linearity -
i. $\langle\alpha u, v\rangle=\alpha\langle u, v\rangle$
ii. $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
c. Positive definiteness

$$
\langle u, u\rangle \geq 0 \&\langle u, u\rangle=0 \Rightarrow u=0
$$

