Binomial (n, p) is re-written as following:

$$
\begin{aligned}
P\{X=i\} & =\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =\left(\frac{n(n-1)(n-2) \ldots(n-i+1)}{i!}\right)\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i} \\
& =\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right)\left(\frac{n-2}{n}\right) \ldots\left(\frac{n-i+1}{n}\right)\left(\frac{\lambda^{i}}{i!}\right)\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-i} \quad i=0,1, \ldots, n .
\end{aligned}
$$

For very large n and moderate λ we can approximate

$$
\left(1-\frac{\lambda}{n}\right)^{n} \approx e^{-\lambda} ; \quad \frac{n-1}{n}=\frac{n-2}{n}=\frac{n-3}{n} \ldots=\frac{n-i+1}{n} \approx 1 ; \quad\left(1-\frac{\lambda}{n}\right)^{i} \approx 1
$$

Hence,

$$
P\{X=i\}=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

which is Poisson's distribution.

