Final Exam Syllabus

Numerical Methods
Engineering Mathematics for Advanced Studies
IIT Dharwad Autumn 2019

1. Machine precision
(a) Introduction to integer and float representations in digital systems
2. Stopping criteria - relative vs absolute
3. Errors and error propogation
(a) Relative and absolute error
(b) Bounds on error of addition/subtraction two variables with given respective error bound
(c) Bounds on error of mutiplication/division of two variables with given respective error bound
4. Finding roots of a equation
(a) Fixed point iterations
i. Convergence criterion
(b) Newton Raphson method
(c) Newton Secant method
5. Interpolation
(a) Lagrange
(b) Cubic Spline
i. Formulation
ii. End conditions
iii. Tension spline
6. Numerical differentiation
(a) Forward difference
(b) Backward difference
(c) Central difference
(d) Wave number
(e) Padé approximation
7. Numerical integration
(a) Rectangular rule (Midpoint Rule)
(b) Newton-Cotes
i. Trapezoidal rule
ii. Simpson's rule
(c) Gauss Quadrature (1D, 2D, 3D)
8. Error estimation
(a) Truncation error in numerical differentiation
(b) Truncation error in
i. Trapezoidal
ii. Rectangular
iii. Simpson's rule
9. Numerical solution of differential equations (DiffEqn)
(a) First order DiffEqn
i. Single step methods
A. Euler methods
B. Heun method
C. R-K methods
ii. Multi-step methods
A. Adam-Bashforth
B. Adam-Moulton
(b) System of first order DiffEqn
i. Higher order DiffEqn
(c) Error assessment
i. Local truncation error for first order DiffEqn
ii. Global truncation error for first order DiffEqu
(d) Numerical methods for
i. Elliptic PDE
ii. Parabolic PDE
iii. Hyperbolic PDE
(e) ADI (alternating direction implicit method)
10. Numerical methods in Linear Algebra
(a) Operations counts for Gaussian elimination
(b) Matrix factorization and their specifics
i. LU
ii. LDU
iii. $\operatorname{LDL}^{\mathrm{T}}$
iv. Cholskey LL $^{\mathrm{T}}$
(c) Ill-conditioning and numerical instability
i. Condition number
(d) Special matrices
i. diagonal matrix
ii. half-bandwidth of band matrix
iii. numerical advantages
(e) QR factorization for least square problems
(f) Indirect (iterative) methods
i. Jacobi
ii. Gauss-Seidel

- Not covered but important topics Fast Fourier Transform (FFT), Eigen value estimation (Power method, Householder transformation, QR decomposition)

