Final Exam Syllabus Numerical Methods

Engineering Mathematics for Advanced Studies

IIT Dharwad Autumn 2019

- 1. Machine precision
 - (a) Introduction to integer and float representations in digital systems
- 2. Stopping criteria relative vs absolute
- 3. Errors and error propogation
 - (a) Relative and absolute error
 - (b) Bounds on error of addition/subtraction two variables with given respective error bound
 - (c) Bounds on error of mutiplication/division of two variables with given respective error bound
- 4. Finding roots of a equation
 - (a) Fixed point iterations
 - i. Convergence criterion
 - (b) Newton Raphson method
 - (c) Newton Secant method
- 5. Interpolation
 - (a) Lagrange
 - (b) Cubic Spline
 - i. Formulation
 - ii. End conditions
 - iii. Tension spline
- 6. Numerical differentiation
 - (a) Forward difference
 - (b) Backward difference
 - (c) Central difference

- (d) Wave number
- (e) Padé approximation
- 7. Numerical integration
 - (a) Rectangular rule (Midpoint Rule)
 - (b) Newton-Cotes
 - i. Trapezoidal rule
 - ii. Simpson's rule
 - (c) Gauss Quadrature (1D, 2D, 3D)
- 8. Error estimation
 - (a) Truncation error in numerical differentiation
 - (b) Truncation error in
 - i. Trapezoidal
 - ii. Rectangular
 - iii. Simpson's rule
- 9. Numerical solution of differential equations (DiffEqn)
 - (a) First order DiffEqn
 - i. Single step methods
 - A. Euler methods
 - B. Heun method
 - C. R-K methods
 - ii. Multi-step methods
 - A. Adam-Bashforth
 - B. Adam-Moulton
 - (b) System of first order DiffEqn
 - i. Higher order DiffEqn
 - (c) Error assessment
 - i. Local truncation error for first order DiffEqn
 - ii. Global truncation error for first order DiffEqn
 - (d) Numerical methods for
 - i. Elliptic PDE
 - ii. Parabolic PDE
 - iii. Hyperbolic PDE

- $\mbox{(e)} \ \ \frac{\rm ADI \ \ (alternating \ \ direction \ \ implicit \ \ method)} {\rm method}$
- 10. Numerical methods in Linear Algebra
 - (a) Operations counts for Gaussian elimination
 - (b) Matrix factorization and their specifics
 - i. LU
 - ii. LDU
 - iii. LDL^{T}
 - iv. Cholskey $\mathbf{L}\mathbf{L}^{\mathrm{T}}$
 - (c) Ill-conditioning and numerical instability
 - i. Condition number
 - (d) Special matrices
 - i. diagonal matrix
 - ii. half-bandwidth of band matrix
 - iii. numerical advantages
 - (e) QR factorization for least square problems
 - (f) Indirect (iterative) methods
 - i. Jacobi
 - ii. Gauss-Seidel

• Not covered but important topics

Fast Fourier Transform (FFT), Eigen value estimation (Power method, Householder transformation, QR decomposition)