PDE-Assignment \#2

Engineering Mathematics for Advanced Studies
IIT Dharwad
Autumn 2019
Submission - Thursday 7th Nov. 2019 10:00am (in-class submission)
Late penalty - 0-24 hrs late* $30 \%, 100 \%$ for more than 24 hrs (penalty starts from 10:01 am, 7th Nov. 2019 ())

Total marks - 10

1. For equation $\nabla^{2} u=0$:
(a) What is the standard name?
(b) What do the independent variables (for which u is defined as dependent variable) "typically" represent?
(c) Please provide the explicit equation for $u=u(R, \theta, \phi)$ where R is radial distance from a point and θ and ϕ are two angles forming spherical coordinate system
(d) Please provide the explicit equation for $u=u(R, \theta, z)$ where R is radial distance from a point, z is the axial distance, and θ is angle forming cyllindrical coordinate system
(e) Please provide the explicit equation for $u=u(t, v)$ where (t, v) for a cartesian coordinate system
(f) Please provide the explicit equation for $u=u(R, \theta)$ where R is radial distance from a point and θ is angle forming polar coordinate system
2. Is $\nabla^{2} u$ operation invariant under following coordinate transformation from $x-y$ coordinates to $x^{*}-y^{*}$ coordinates:
(a) Translation - defined by $x^{*}=x+a$ and $y^{*}=y+b$ where a and b are constants
(b) $\left\{\begin{array}{l}x^{*} \\ y^{*}\end{array}\right\}=\left[\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right]\left\{\begin{array}{l}x \\ y\end{array}\right\}$ where α is a constant
