PDE-Assignment \#1

Engineering Mathematics for Advanced Studies

IIT Dharwad

Autumn 2019
Submission - Monday 28th Oct. 2019 5:30pm
Late penalty - 1 day late* $30 \%, 100 \%$ for more than a day ($*$ starts from 5:31pm, 28th Oct. 2019!)
Total marks - 20

1. Wave equation in its standard form is given by $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$. However in certain problems there may be an extra force term that will cause difficulty in separation of variables. e.g. consider $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+A x$ for $0<x<L$ and $t>0$ with boundary conditions $u(0, t)=u(L, t)=0$ for $t \geq 0$ and initial contitions $u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=1$ for $0<x<L$?
(a) Can you think of a typical physics problems that would result in a force term used in this problem?
(b) Verify that separation of variable will not work for the above problem. (hint: substitute $u(x, t)=F(x) G(t)$ and attempt to separate x and t terms)
(c) Now transform the problem using the following substitution for $u(x, t)$:

$$
u(x, t)=y(x, t)+\psi(x)
$$

write the Wave equation for above form of $u(x, t)$
(d) Can there be appropriate choice of $\psi(x)$ that can bring it to the form: $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$? Please do the necessary integration (integrate twice) and get the general form
(marks 2)
(e) Find the two constants in expression for $\psi(x)$ using boundary conditions given above. Target $u(0, t)=y(0, t)$ and $u(L, t)=y(L, t)$ while getting the constants to make life easier ©
(f) Sum up the transformed problem by listing:
i. Differential equation in terms of $y(x, t)$
ii. Two boundary conditions
iii. Two initial conditions
2. Assuming axial symmetry the wave equation in polar coordinates is

$$
\frac{\partial^{2} z}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}\right)
$$

Initial position $z(r, 0)=f(r)$ and initial velocity $\frac{\partial z}{\partial t}(r, 0)=g(r)$
Please find two separate ODEs for above problem following the same procedure used in the class for wave equation in cartesian form.
3. Identify type of the following PDE (elliptic/parabolic/hyperbolic):

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-3 \frac{\partial^{2} u}{\partial y^{2}}+2 \frac{\partial u}{\partial y}+u-y=\text { constant } \tag{marks2}
\end{equation*}
$$

