In-Class Test #1 - Module Numerical Methods Engineering Mathematics for Advanced Studies IIT Dharwad Autumn 2019

Time - 20 minutes

Maximum score - 20

Rule for absentee - Minimum 30% penalty, discuss reasons absense in person to get a chance for re-test.

Date - 14th Nov. 2019

1. Free run out condition on the cubic spline means:

- (a) Slopes on both ends are zero
- (b) Curvature Second derivative of curve at both ends are zero
- (c) Curvature Second derivative of curve at both end nodes equals the respective values at neighboring node
- (d) Slope at both end nodes equals the respective values at neighboring node

ANSWER: ____(b)_____

2. A student ABC uses following criteria to stop numerical iterations: $error = (x_{new} - x_{prev})$ if $error \leq tolerance$ exit

Another student XYZ uses $error = \left(\frac{x_{new} - x_{prev}}{x_{new}}\right)$ if $error \leq tolerance$ exit.

Which one is more appropriate approach to ensure universatality of the subroutine across different applications - ABC's or XYZ's? (mark 1)

```
XYZ approach is more professional as it uses relative error instead of absolute error.
Note, however, both have common flaw - absolute value of the error ||error|| should have been used in if statement
```

Which practically precaution is necessary for XYZ appropriate approach?

```
Precaution necessary in case of XYZ is that it involved division by a x_{new}. Hence it is imperative to ensure that x_{new} \neq 0 i.e. additional if statement :
```

 $\begin{array}{l} \text{if } x_{new} \neq 0 \\ \text{error=} \parallel \frac{x_{new} - x_{prev}}{x_{new}} \parallel \end{array}$

- 3. True or False
 - (a) Global error of the Trapezoidal method is of the smaller order than the order of local error of the same method (mark 1)

_____TRUE_____Trapezoidal methods - Global error $\mathcal{O}(h^2)$ and Local error $\mathcal{O}(h^3)$

(b) Simpson's rule belongs to Newton-Cotes category however Gauss quadrature is not Newton-Cote's formula (mark 1)

_____TRUE______

(mark 2)

(mark 2)

	(c)	Langrange interpolation is a polynomial interpolation	(mark 1)
		TRUE	
	(d)	Numerical finite difference scheme is unconditionally stable for Elliptical PDE	(mark 1)
		TRUE	
	(e)	Numerical finite difference scheme is unconditionally stable for Parabolic PDE	(mark 1)
		FALSE For parabolic equation there is conditional states (See section 19.6, $r = \frac{k}{h^2} \le \frac{1}{2}$)	oility.
	(f)	Higher order differential equation can be solved using appropriate choice of Euler method	(mark 1)
		TRUETypical process: Convert the equation into a spontenergy of first of linear differential equations and use Euler method in higher dimensions.	ystem ions.
	(g)	Newton-Raphson methods needs more evaluations of functions compared to Newton-Secant method	(mark 1)
		TRUENewton-Raphson evaluated both $f(x_i)$ and $f'(x_i)$ Newton-Raphson evaluated both $f(x_i)$ and $f'(x_i)$ and f	wton- Lculation).
4.	integ	structor gets equally spaced 11 points from equation $y = 2x^2 - 4x + 2$ and poses the numerical gration problem to students. Student ABC integrates using the Simpson's Rule while the XYZ Trapezoidal rule (Choose all correct answers)	(mark 2)
(a) ABC's answer will match analytical value of the integration (ignore round-off error			rrors)
	(b)	XYZ's answer will match analytical value of the integration (ignore round-off errors)	
	. ,	Both ABC and XYZ will have some error, but ABC's error would be smaller that XYZ's error	
	. ,	Both ABC and XYZ will have some error, but ABC's error would be larger that XYZ's error	
	` '	If one uses midpoint rule, accuracy will be better that both ABC and XYZ	
		Note that the given function is quadratic in nature and hence Simpson's rule while uses parabolic approximation would correctly estimate integral.	ich
5.	man	solving system of linear equations $Ax = b$, given the inverse A^{-1} is readily available, state how y operations would be required to get x for a given b? where $A_{n \times n}$	(mark 2)
6.	error	en that variable x can be have numerical error bounded by β_x and y can be have numerical r bounded by β_y , what will be the absolute error bound for $z = x + y$ = $\beta_x + \beta_y$	(mark 2)
7.	woul h_{neu}	The reduces the step size by half, the numerical scheme which has error of the order 3 $\mathcal{O}(h^3)$, and have how much improvement/reduction change in its accuracy ? $p_{2}=\frac{1}{2}h_{old} \implies error \mathcal{O}(h_{new}^3)$ i.e. $\mathcal{O}(\frac{h_{old}^3}{8})$ Accuracy will improve as truncation error become smaller by a factor of 8.	(marks 2)