In-Class Test \#1 - Module Numerical Methods

Engineering Mathematics for Advanced Studies
IIT Dharwad
Autumn 2019

Time - 20 minutes
Maximum score - 20
Rule for absentee - Minimum 30\% penalty, discuss reasons absense in person to get a chance for re-test.

Date - 14th Nov. 2019

1. Free run out condition on the cubic spline means:
(a) Slopes on both ends are zero
(b) Curvature Second derivative of curve at both ends are zero
(c) Curvature Second derivative of curve at both end nodes equals the respective values at neighboring node
(d) Slope at both end nodes equals the respective values at neighboring node

ANSWER: \qquad
2. A student ABC uses following criteria to stop numerical iterations:
error $=\left(x_{\text {new }}-x_{\text {prev }}\right)$
if error \leqslant tolerance
exit
Another student XYZ uses
error $=\left(\frac{x_{\text {new }}-x_{\text {prev }}}{x_{\text {new }}}\right)$
if error \leqslant tolerance
exit

Which one is more appropriate approach to ensure universatality of the subroutine across different applications - ABC's or XYZ's?

Which practically precaution is necessary for XYZ's apprepriate approach?
3. True or False
(a) Global error of the Trapezoidal method is of the smaller order than the order of local error of the same method
(b) Simpson's rule belongs to Newton-Cotes category however Gauss quadrature is not NewtonCote's formula
(c) Langrange interpolation is a polynomial interpolation
(d) Numerical finite difference scheme is unconditionally stable for Elliptical PDE
(e) Numerical finite difference scheme is unconditionally stable for Parabolic PDE
\qquad
(f) Higher order differential equation can be solved using appropriate choice of Euler method
(g) Newton-Raphson methods needs more evaluations of functions compared to Newton-Secant method
4. If instructor gets equally spaced 11 points from equation $y=2 x^{2}-4 x+2$ and poses the numerical integration problem to students. Student ABC integrates using the Simpson's Rule while the XYZ uses Trapezoidal rule (Choose all correct answers)
(a) ABC's answer will match analytical value of the integration (ignore round-off errors)
(b) XYZ's answer will match analytical value of the integration (ignore round-off errors)
(c) Both ABC and XYZ will have some error, but ABC's error would be smaller that XYZ's error
(d) Both ABC and XYZ will have some error, but ABC's error would be larger that XYZ's error
(e) If one uses midpoint rule, accuracy will be better that both ABC and XYZ
5. For solving system of linear equations $A x=b$, given the inverse A^{-1} is readily available, state how many operations would be required to get x for a given b ?
6. Given that variable x can be have numerical error bounded by β_{x} and y can be have numerical error bounded by β_{y}, what will be the absolute error bound for $z=x+y$
7. If one reduces the step size by half, the numerical scheme which has error of the order $3 \mathcal{O}\left(h^{3}\right)$, would have how much improvement/reduction ehange in its accuracy?

