Final Exam - Module - Linear Algebra

Time - 2 Hours (2:30pm -4:30pm, 28th Sept. 2019) Maximum score - 120; Minimum score -Rule for absentee - Minimum 30% penalty; discuss reasons absense in person to get a chance for re-test.

- 1. * There is 100% negative marking for most of the True/False and Yes/No questions. Marginal note has * in those cases. e.g. Incorrect answer to a question with (Marks 2*) will fetch penalty of -2 mark.
- 2. Worked out solutions are must for some problems.
- 3. Answer to question 7 is expected in the question paper itself
- 4. Please ensure to write Question number in a box as a heading to the upcoming answer on suppliments e.g.

Question 1

- 1. Let \boldsymbol{P} be a plane in \mathbb{R}^3 containing vector elements $\boldsymbol{v}(x, y, z)$ which satisfy 3x + 2y + 2z = 3.
 - (a) What is the equation of parallel plane P_0 which passes through the origin? (Marks 2*) (b) Is P a subspace of \mathbb{R}^3 ? (Marks 2*)
 - (c) Is P_0 a subspace of \mathbb{R}^3 ? (Marks 2^{*})
- 2. Please answer either Yes or No. Which of the following subsets of \mathbb{R}^3 are actually subspaces: For the plane of vectors $\boldsymbol{b}(b_1, b_2, b_3)$
 - (a) with first component $b_1 = 0$ (Marks 2*)
 - (b) with first component $b_1 = 1$ (Marks 2^*)
 - (c) with $b_2 * b_3 = 0$ (this is the union of two subspaces: plane $b_2 = 0$ and $b_3 = 0$ (Marks 2^*)
 - (d) all combinations of two given vectors (1,1,0) and (2,0,1)
 - (e) plane of vectors satisfying $b_3 b_2 + 3b_1 = 0$
- 3. Please answer: (Explicit evaluation of the matrix multiplications and the determinants does not carry any marks)
 - (a) Verify the following set of basis vectors qualify as the basis for entire \mathbb{R}^4 ?

	1		1		-1		0
$v_1 =$	$-1 \\ 0$	$, v_2 =$	$0 \\ -1$	$, v_{3} =$	0	$, v_4 =$	$\begin{array}{c} 1\\ 0 \end{array}$
	0		2		1		1

- (b) Let A be a 4×4 matrix whose **columns** are formed by above four vectors in same sequence. True or false : at least one of the pivot value is expected to be zero.
- (c) What will be the determinant of the D given by $D = (A * B^T * C)^2$ where B is obtained by swapping second and third row of the matrix A^T and C is obtained by adding 2 times 3rd row of A to 4th row of A?
- 4. Say you have m linear algebraic equations in n variables; in matrix form we write Ax = b. State true or false:

(Marks 2^*)

(Marks 2^*)

(Marks 2^*)

(Marks 4)

(Marks 4)

(a) If $n = m$ there is always at most one solution.	(Marks 2^*)
(b) If $n > m$ you can always solve $Ax = b$	(Marks 2^*)
(c) If $n > m$ the nullspace of A has dimension greater than zero	(Marks 2^*)
(d) If $n < m$ then for some b there is no solution of $Ax = b$	(Marks 2^*)
(e) If $n < m$ the only solution of $Ax = 0$ is $x = 0$	(Marks 2^*)
5. Let U and V both be four-dimensional subspaces of \mathbb{R}^7 , and let $W = U \cap V$.	
(a) Will W be always a vector space? (Yes/No)	(Marks 2^*)

(b) If W is a vector space, what are possible values for the dimension of W? (Hint: Create an example to form and verify your thoughts) (Marks 2^*)

(Marks 3)

(Marks 1+1)

6. Perform LU decomposition for matrix A given below:

	1	1	1
A =	1	2	2
	1	2	3
	_		

(b) find a new vector x_3 by adding vector $x_2 = \begin{cases} 1\\ 1\\ 1 \end{cases}$ to the x_1 . Find b such that $Ax_3 = b$. (Marks 1)

(Note - if you are not sure about actual x_1 calculation in above (a) assume it to be $x_1 = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$ to proceed further)

- (c) Leveraging the fact that A is a linear transformation i.e. $Ax_3 = A(x_1 + x_2)$, represent this particular $Ax_3 = b$ in above diagram:
 - i. Enter correct number in the empty brackets above R. i.e. $\mathbb{R}^{(?)}$ (two places)

	ii. name the missing "" name of the space (one place)	(Marks 1)
	iii. enter 4 correct numbers depicting the dimesion of the respective 4 spaces in the following diagram (empty brackets near the rectangles)	(Marks 1 + 1 + 1)
	iv. above four vectors, x_1 , x_2 , x_3 , b at the correct locations (4 filled circles)	1 + 1 + 1 + 1)
8.	If Rows of $A_{m \times n}$ matrix are linearly independent, then	$egin{arks} (\mathrm{Marks}\ 1{+}1{+}1{+}1) \end{array}$
	(a) possible value(s) for rank $A = ?$	(Marks 1)
	(b) dimension of column space = ?	(Marks 1)
	(c) dimension of left null space = ?	(Marks 1)
9.	At noon the minute and hour hands of a clock coincide, What in the first time, T1, when they are perpendicular? (Use concepts learnt in the class, no marks for only final answer)	(Marks 10)

10. Is following transformation T from \mathbb{R}^2 to \mathbb{R}^2 a linear transformation ? (Marks 4) (no marks awarded even for right answer if the required process/explanation is not provided. Attach worked out solution on suppliment papers.)

$$T(x_1, x_2) = \sqrt{x_1^2 + x_2^2}$$

note- vector addition operations and multiplication by scalar is defined as:

$$\left\{ \begin{array}{c} x_1 \\ x_2 \end{array} \right\} + \left\{ \begin{array}{c} x_3 \\ x_4 \end{array} \right\} = \left\{ \begin{array}{c} x_1 + x_3 \\ x_2 + x_4 \end{array} \right\}$$
$$\alpha \left\{ \begin{array}{c} x_1 \\ x_2 \end{array} \right\} = \left\{ \begin{array}{c} \alpha x_1 \\ \alpha x_2 \end{array} \right\}$$

Answer: _____ (Yes/No)

11. Project vector b onto a line through a to get projection vector p along a. Error is e = b - p.

- (a) Report *e* and norm-2 magnitude (i.e. length) of error vector in eucleadian space. (Marks 4) $b = \begin{bmatrix} 1\\2\\2 \end{bmatrix} a = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$
- (b) Please provide matrix P representing Projection operation such that given any vector $y \in \mathbb{R}^3$ we can get its projection t = Py (Marks 4)

12. Q is an orthogonal transformation, and $v_1 = Qu_1$ and $v_2 = Qu_2$. Given that the vectors $u_1 = \begin{bmatrix} 3\\2\\-6 \end{bmatrix}$ and $u_2 = \begin{bmatrix} -3\\4\\-6 \end{bmatrix}$ which all of the following are appropriate for innerproduct $v_1.v_2$: (Marks 2)

(a)
$$v_1.v_2 < -33$$

(b)
$$v_1.v_2 > 33$$

(c)
$$-66 < v_1.v_2 < 66$$

(d)
$$v_1.v_2 = 0$$

13. If transformation A has following eigen vectors and eigen values: $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\lambda_1 = 5; \ v_1 = \begin{bmatrix} 1\\2 \end{bmatrix} \lambda_2 = 0; \ v_2 = \begin{bmatrix} 2\\-1 \end{bmatrix}$$

- (a) A is diagonalizable True or False
- (b) A is invertible True or False (Mark
- (c) What will be determinant of A^3 ?

(Marks 2*) (Marks 2*)

(Marks 2)

- (d) We can reconstruct A using above information. Can you provide explicit matrix representation for A? (Marks 4)
- (e) What will be A^3 ? (Marks 4)

14. Verify if:

(a) following matrix Hermitian?

$$A = \left[\begin{array}{cc} 1 & 1-i \\ 1+i & 2 \end{array} \right]$$

(b) following matrix is unitary?

$$B = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$$
(Marks 2)

(Marks 2)

(Marks 4)

- 15. Which **all** of the following conditions imply that a matrix is semi-positive definite?
 - (a) determinant is positive
 - (b) determinant is non-negative
 - (c) no pivot is negative
 - (d) $v \cdot Av \ge 0$ for all eigen vectors v of A
 - (e) $x \cdot Ax \ge 0$ for any vector x

16. If $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

- (a) Please mention the dimensions $(m \times n)$ of the matrices and vectors in its Singular Value Decomposition (SVD) (Marks 4)
- (b) For some other matrix B it is found that out of total 20 eigen values(λ_i) calculated during the SVD, $\sqrt{\lambda_1^2 + \lambda_8^2 + \lambda_{10}^2 + \lambda_{14}^2} > 0.95 * \sqrt{\sum_{i=1}^{i=20} \lambda_i^2}$. Where and how can this information be leveraged?(Only max. 3-4 lines answer is expected..but 4 marks) (Marks 4)
- 17. Suppose $u_1, u_2, u_3, \dots, u_n$ and $v_1, v_2, v_3, \dots, v_n$ are orthonormal bases for \mathbb{R}^n . Construct the matrix A that will transform each v_i into u_i i.e. $u_1 = Av_1, u_2 = Av_2, \dots, u_n = Av_n$. (Marks 4)