## Final Exam - Module - Linear Algebra <br> Engineering Mathematics for Advanced Studies <br> IIT Dharwad

Autumn 2019
Time - 2 Hours (2:30pm -4:30pm, 28th Sept. 2019)
Maximum score - 120; Minimum score -
Rule for absentee - Minimum $30 \%$ penalty; discuss reasons absense in person to get a chance for re-test.

1.     * There is $100 \%$ negative marking for most of the True/False and Yes/No questions. Marginal note has * in those cases. e.g. Incorrect answer to a question with (Marks $2^{*}$ ) will fetch penalty of -2 mark.
2. Worked out solutions are must for some problems.
3. Answer to question 7 is expected in the question paper itself
4. Please ensure to write Question number in a box as a heading to the upcoming answer on suppliments e.g.

## Question 1

1. Let $\boldsymbol{P}$ be a plane in $\mathbb{R}^{3}$ containing vector elements $\boldsymbol{v}(x, y, z)$ which satisfy $3 x+2 y+2 z=3$.
(a) What is the equation of parallel plane $\boldsymbol{P}_{\mathbf{0}}$ which passes through the origin?
(b) Is $\boldsymbol{P}$ a subspace of $\mathbb{R}^{3}$ ?
(c) Is $\boldsymbol{P}_{\mathbf{0}}$ a subspace of $\mathbb{R}^{3}$ ?
2. Please answer: (Explicit evaluation of the matrix multiplications and the determinants does not carry any marks)
(a) Verify the following set of basis vectors qualify as the basis for entire $\mathbb{R}^{4}$ ?

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
2
\end{array}\right], v_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right], v_{4}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

(b) Let A be a $4 \times 4$ matrix whose columns are formed by above four vectors in same sequence. True or false : at least one of the pivot value is expected to be zero.
(c) What will be the determinant of the $D$ given by $D=\left(A * B^{T} * C\right)^{2}$ where $B$ is obtained by swapping second and third row of the matrix $A^{T}$ and $C$ is obtained by adding 2 times 3rd row of $A$ to 4 th row of $A$ ?
4. Say you have $m$ linear algebraic equations in $n$ variables; in matrix form we write $A x=b$. State true or false:
(a) If $n=m$ there is always at most one solution.
(b) If $n>m$ you can always solve $A x=b$
(c) If $n>m$ the nullspace of A has dimension greater than zero
(d) If $n<m$ then for some $b$ there is no solution of $A x=b$
(e) If $n<m$ the only solution of $A x=0$ is $x=0$
5. Let $U$ and $V$ both be four-dimensional subspaces of $\mathbb{R}^{7}$, and let $W=U \cap V$.
(a) Will $W$ be always a vector space? (Yes/No)
(b) If $W$ is a vector space, what are possible values for the dimension of $W$ ? (Hint: Create an example to form and verify your thoughts)
6. Perform LU decomposition for matrix A given below:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

7. If $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$ is a linear transformation

(a) find a vector $x_{1}$ in the null space of A
(b) find a new vector $x_{3}$ by adding vector $x_{2}=\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right\}$ to the $x_{1}$. Find $b$ such that $A x_{3}=b$.
(Marks 4)
(Marks 1)
(Note - if you are not sure about actual $x_{1}$ calculation in above (a) assume it to be $x 1=\left\{\begin{array}{l}0 \\ 0 \\ 0\end{array}\right\}$ to proceed further)
(c) Leveraging the fact that $A$ is a linear transformation i.e. $A x_{3}=A\left(x_{1}+x_{2}\right)$, represent this particular $A x_{3}=b$ in above diagram:
i. Enter correct number in the empty brackets above R. i.e. $\mathbb{R}^{(?)}$ (two places)
ii. name the missing " $\qquad$ " name of the space (one place)
iii. enter 4 correct numbers depicting the dimesion of the respective 4 spaces in the following diagram (empty brackets near the rectangles)
iv. above four vectors, $x_{1}, x_{2}, x_{3}, b$ at the correct locations (4 filled circles)
8. If Rows of $A_{m \times n}$ matrix are linearly independent, then
(a) possible value(s) for rank $\mathrm{A}=$ ?
(b) dimension of column space $=$ ?
(c) dimension of left null space $=$ ?
9. At noon the minute and hour hands of a clock coincide, What in the first time,T1, when they are perpendicular? (Use concepts learnt in the class, no marks for only final answer)
10. Is following transformation $T$ from $\mathbb{R}^{2}$ to $\mathbb{R}^{2}$ a linear transformation ?
(no marks awarded even for right answer if the required process/explanation is not provided. Attach worked out solution on suppliment papers.)

$$
T\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

note- vector addition operations and multiplication by scalar is defined as:

$$
\begin{gathered}
\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}+\left\{\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right\}=\left\{\begin{array}{l}
x_{1}+x_{3} \\
x_{2}+x_{4}
\end{array}\right\} \\
\alpha\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\alpha x_{1} \\
\alpha x_{2}
\end{array}\right\}
\end{gathered}
$$

Answer: $\qquad$ (Yes/No)
11. Project vector $b$ onto a line through $a$ to get projection vector $p$ along $a$. Error is $e=b-p$.
(a) Report $e$ and norm-2 magnitude (i.e. length) of error vector in eucleadian space.

$$
b=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] a=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(b) Please provide matrix $P$ representing Projection operation such that given any vector $y \in \mathbb{R}^{3}$ we can get its projection $t=P y$
12. Q is an orthogonal transformation, and $v_{1}=Q u_{1}$ and $v_{2}=Q u_{2}$. Given that the vectors $u_{1}=$ $\left[\begin{array}{c}3 \\ 2 \\ -6\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}-3 \\ 4 \\ -6\end{array}\right]$ which all of the following are appropriate for innerproduct $v_{1} \cdot v_{2}$ :
(a) $v_{1} \cdot v_{2}<-33$
(b) $v_{1} \cdot v_{2}>33$
(c) $-66<v_{1} \cdot v_{2}<66$
(d) $v_{1} \cdot v_{2}=0$
13. If transformation $A$ has following eigen vectors and eigen values:
$\lambda_{1}=5 ; v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \lambda_{2}=0 ; v_{2}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$
(a) A is diagonalizable - True or False
(b) A is invertible - True or False
(c) What will be determinant of $A^{3}$ ?
(d) We can reconstruct $A$ using above information. Can you provide explicit matrix representation for $A$ ?
(e) What will be $A^{3}$ ?
14. Verify if:
(a) following matrix Hermitian?
(b) following matrix is unitary?

$$
A=\left[\begin{array}{cc}
1 & 1-i \\
1+i & 2
\end{array}\right]
$$

$$
B=\left[\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right]
$$

15. Which all of the following conditions imply that a matrix is semi-positive definite?
(a) determinant is positive
(b) determinant is non-negative
(c) no pivot is negative
(d) $v \cdot A v \geq 0$ for all eigen vectors $v$ of A
(e) $x \cdot A x \geq 0$ for any vector $x$
16. If $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$
(a) Please mention the dimensions $(m \times n)$ of the matrices and vectors in its Singular Value Decomposition (SVD)
(b) For some other matrix $B$ it is found that out of total 20 eigen values $\left(\lambda_{i}\right)$ calculated during
the SVD, $\sqrt{\lambda_{1}^{2}+\lambda_{8}^{2}+\lambda_{10}^{2}+\lambda_{14}^{2}}>0.95 * \sqrt{\sum_{i=1}^{i=20} \lambda_{i}^{2}}$. Where and how can this information be leveraged?(Only max. 3-4 lines answer is expected..but 4 marks)
17. Suppose $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are orthonormal bases for $\mathbb{R}^{n}$. Construct the matrix $A$ that will transform each $v_{j}$ into $u_{j}$ i.e. $u_{1}=A v_{1}, u 2=A v_{2}, \ldots, u_{n}=A v_{n}$.
