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Abstract

In this article, we define a function that counts the number of (onto) homomor-
phisms of an oriented graph. We show that this function is always a polynomial
and establish it as an extension of the notion of chromatic polynomials. We study
algebraic properties of this function. In particular we show that the coefficients of
these polynomials have alternating sign property and that the polynomials associ-
ated to the independent sets have relations with the Stirling numbers of the second
kind.

1 Introduction

In 1994, Courcelle [4] extended the notion of vertex coloring for oriented graphs which
inspired a number of works in this domain (see [20] for details). The way to view Cour-
celle’s definition as a natural extension of vertex coloring for simple graphs is through
homomorphisms.

A homomorphism f of a simple (oriented) graph G to a simple (oriented) target graph
H is a function f : V (G) → V (H) such that f(u)f(v) is an edge (arc) if uv is an edge (arc).
A homomorphism f with an image of cardinality k is a k-coloring (oriented k-coloring) of
G and the image of a vertex is its color1. The minimum k such that G admits a k-coloring
(oriented k-coloring) is the chromatic number χ(G) (oriented chromatic number χo(G))
of G.

In 1994, Sopena [18] had defined a function, which turned out to be a polynomial, that
counts the number of oriented colorings of a graph. He also noticed that this function lacks

1This is a slightly modified, but essentially equivalent, version of the standard convention. In the stan-
dard convention, we have k = |V (H)| while here we have k = |f(V (G))|. Importantly, this modification
does not inflict any change in the standard definition of (oriented) chromatic number.
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two very important properties, namely, the alternating signs of the coefficients property
(present in chromatic polynomials) and the unimodal behavior of the absolute values
of the coefficients property (present in chromatic polynomial, proved recently by Huh
and Katz [9] through positively settling a long standing conjecture). Recently, Cox and
Duffy [5] has made considerable progress on this topic by establishing several interesting
properties of the chromatic polynomial. Looking back at the two decades of research
on oriented coloring, it can be noted that, homomorphism, alongside coloring, is also an
important aspect of oriented coloring.

Keeping that in mind, following the footsteps of Birkhoff [3] and Sopena [18], we define
a function, which also turns out to be a polynomial, for counting the number of (onto)
homomorphisms of an oriented graph to tournaments. This polynomial possesses the
alternating signs of the coefficients property and, upon checking a number of examples,
we conjecture it to have the unimodal behavier of the absolute values of the coefficients
property as well.

We hope that these polynomials can become valuable tools for studying oriented chro-
matic number in the near future. We initiate the study by devising tools for studying
these polynomials and by proving some of their interesting properties.

In this article, we motivate and introduce the notion of oriented homomorphic poly-
nomials in Section 2 and justify its name in Section 3. In Section 4 we develop some
useful tools to study the problem. In Section 5 we present interesting properties of the
polynomials and prove most of them, while some of the proofs are moved to Section 6 to
maintain the flow of reading. Finally in Section 7 we conclude the article.

2 Counting homomorphisms

Two functions f1 and f2, having the same domain D, but possibly different co-domains,
are equivalent if f1(v) = f2(v) for all v ∈ D, otherwise they are distinct.

The chromatic polynomial [7] χ(G, x) of a simple graph G denotes the number of ways
to obtain a y-coloring of G, for all y ≤ x, using the colors {0, 1, · · · , x− 1}. The function
χ(G, x) is known to be a polynomial in x, hence the name.

Observe that, to distinguish between two colorings we are only interested in the images
of the vertices of G, not the structure of the target graph. That is not a concern though,
as any y-coloring of G, for each y ≤ x, can be viewed as a homomorphism of G to the
complete graph Kx.

To be precise, let Cx(G) be the set of distinct y-colorings (for all y ≤ x), using the colors
{0, 1, · · · , x− 1}, of G and Hx(G) be the set of distinct homomorphisms (not necessarily
onto) of G to Kx.

Observation 2.1. Given a simple graph G, we have χ(G, x) = |Cx(G)| = |Hx(G)|.

However, the scenario is completely different for oriented graphs. The major reason
is that, unlike in the case of simple graphs, a maximal (with respect to number of edges)
graph on x vertices is not unique for oriented graphs. To elaborate, while there is only
one maximal graph Kx (the complete graph) with set of vertices {0, 1, · · · , x− 1} in the
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f0 : [a, b, c] → [0, 1, 2]

f2 : [a, b, c] → [2, 0, 1]

f1 : [a, b, c] → [1, 2, 0] f : [a, b, c] → [0, 1, 2]

g0 : [x, y, z] → [0, 1, 2]

g2 : [x, y, z] → [2, 0, 1]

g1 : [x, y, z] → [1, 2, 0]

Figure 1: Counting homomorphisms of a directed 2-path and a directed 3-cycle to tour-
naments of order 3.

undirected case, there are 2(
x
2) different maximal oriented graphs (the tournaments) with

set of vertices {0, 1, · · · , x− 1}.
Therefore for an oriented graph G, the set OCx(G) of distinct oriented y-colorings, for

all y ≤ x, using the colors {0, 1, · · · , x−1} of G is not in a bijection with the set OHx(G)
of all homomorphisms of G to tournaments having x vertices {0, 1, · · · , x− 1}.

Sopena [18] defined the oriented chromatic polynomial of an oriented graph G as

P (G, x) = |OCx(G)|

where OCx(G) denote the set of distinct oriented y-colorings (for all y ≤ x) of G using
the colors {0, 1, · · · , x− 1}.

In the following we look at an example to better understand this function and some
of its limitations for motivating our “oriented version” of the chromatic polynomial for
oriented graphs.

An oclique [10] O is an oriented graph with χo(O) = |V (O)|. It is known that an
oriented graph O is an oclique if and only if each pair of its non-adjacent vertices are
connected by a directed 2-path [10]. Also, it is known that the number of arcs of an
oclique on n vertices may vary between (n log n− 3n

2
) and

(
n
2

)
[6]. However, the oriented

chromatic polynomial for any oclique O on n vertices is the same [18]:

P (O, x) = x(x− 1) · · · (x− n+ 1).

Let P2 and C3 denote the directed 2-path and the directed cycle of order three having
set of vertices V (P2) = {a, b, c} and V (C3) = {x, y, z}, respectively (as shown in Fig. 1).
There are two non-isomorphic tournaments on 3 vertices, namely, the directed tournament
DT3 and the transitive tournament TT3.
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Note that both P2 and C3 are ocliques on 3 vertices. Thus they both have the same
oriented chromatic polynomial:

P (P2, x) = P (C3, x) = x(x− 1)(x− 2) = x3 − 3x2 + 2x.

In particular, from this example we can conclude that the oriented chromatic polynomial
does not determine the number of arcs of the corresponding oriented graph.

Whereas, if we look at their set of homomorphisms to tournaments on 3 vertices, we
observe some differences.

There are exactly three distinct homomorphisms of P2 to DT3, namely, f0, f1 and f2
given by the following:

fi : a 7−→ i, b 7−→ i+ 1, c 7−→ i+ 2

for all i ∈ {0, 1, 2}, where the + operations are taken modulo 3. Similarly, there are
exactly three distinct homomorphisms of C3 to DT3, namely, g0, g1 and g2 given by the
following:

gi : x 7−→ i, y 7−→ i+ 1, z 7−→ i+ 2

for all i ∈ {0, 1, 2}, where the + operations are taken modulo 3.
On the other hand, there is exactly one homomorphism of P2 to TT3:

f : a 7−→ 0, b 7−→ 1, c 7−→ 2.

In contrast, C3 does not admit any homomorphism to TT3.

Remark 2.2. Notice that, while counting the oriented chromatic polynomial, the oriented
colorings corresponding to the homomorphisms f0 and f are counted as the same coloring.

Note that there are two distinct directed (labeled) tournaments DT3 and six distinct
transitive (labeled) tournaments TT3 on set of vertices {0, 1, 2}. Thus |OH3(P2)| = 12
and |OH3(C3)| = 6. Hence note that, the function defined by |OHx(G)| is not the same
for P2 and C3. However, while counting2

|OHx(P2)| = 23(x−3)+(x−3
2 ) · 2x(x− 1)(x− 2)

and
|OHx(C3)| = 23(x−3)+(x−3

2 ) · x(x− 1)(x− 2)

we are having to make a lot of redundant counts due to the vertices which are not part
of the image. Furthermore, due to the redundant counts, the function is not polynomial
as per our example. To avoid these redundant counts and to, hopefully, obtain a better
behaved function we define a simplified version of |OHx(G)| in the following.

2For G = P2 or C3, we can have x(x− 1)(x− 2) choices for the images of the vertices of G. Moreover,
the directions of 2 or 3 arcs joining the vertices among the images of f(V (G)), respectively, will have
fixed directions to satisfy the conditions of a homomorphism. That means, each of the remaining arcs will
have two choices for direction. Notice that, there are, respectively, 1 or 0 such arcs joining the vertices
among the images of f(V (G)), 3(x− 3) arcs with exactly one endpoint in f(V (G)), and

(
x−3
2

)
arcs with

both endpoints outside f(V (G)).
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Let Tx be the set of all tournaments whose set of vertices are subsets of {0, 1, · · · , x−1}.
Given an oriented graph G and a tournament T , let OHT (G) be the set of all distinct
onto homomorphisms of G to T . Now define

OH∗
x(G) = ∪T∈TxOHT (G)

and consider the function
χo(G, x) = |OH∗

x(G)|.
Reworking our example we obtain distinct polynomials3

χo(P2, x) = 2x(x− 1)(x− 2) = 2x3 − 6x2 + 4x

and
χo(C3, x) = x(x− 1)(x− 2) = x3 − 3x2 + 2x.

In fact, notice that

Proposition 2.3. Given two oriented graphs G and H, |OHx(G)| = |OHx(H)| if and
only if |OH∗

x(G)| = |OH∗
x(H)| for all x ∈ {1, 2, · · · }.

Proof. Suppose |OHx(G)| = |OHx(H)| for all x ∈ {1, 2, · · · }. We want to show |OH∗
x(G)| =

|OH∗
x(H)| for all x ∈ {1, 2, · · · }. Let us prove this by induction on x.
For the base case, observe that

|OH1(G)| = |OH∗
1(G)| = |OH∗

1(H)| = |OH1(H)|
is trivially true. Suppose |OH∗

y(G)| = |OH∗
y(H)| for all y ≤ x − 1. We will show that

it is true for y = x as well. Notice that the number of homomorphisms in OHx(G)
(resp., OHx(H)) whose cardinality of the image set is equal to y ≤ x can be expressed
as

(
x

x−y

)
· |OH∗

y(G)| (resp.,
(

x
x−y

)
· |OH∗

y(H)|). Therefore, using the induction hypothesis
and our basic assumption

|OH∗
x(G)| = |OHx(G)| −

x−1∑
y=1

(
x

y

)
|OH∗

y(G)|

= |OHx(H)| −
x−1∑
y=1

(
x

y

)
|OH∗

y(H)|

= |OH∗
x(H)|.

For the converse, assume that |OH∗
x(G)| = |OH∗

x(H)| for all x ∈ {1, 2, · · · }. Counting
like before, we have

|OHx(G)| =
x∑

y=1

(
x

y

)
|OH∗

y(G)|

=
x∑

y=1

(
x

y

)
|OH∗

y(H)|

= |OHx(H)|.
3For G = P2 or C3, we can have x(x − 1)(x − 2) choices for the images of the vertices of G. Now,

among the arcs joining the vertices of f(V (G)), all but 3− |A(G)| will have fixed direction to satisfy the
conditions of a homomorphism. In this modified version, we do not care about {0, 1, · · · , x−1}\f(V (G)).
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That concludes the proof.

In this sense the new function |OH∗
x(·)| is truly a good modification of |OHx(·)|.

Upon further study, in hindsight, the function χo(·, ·) turns out to be very interesting.
To reiterate, let Tx be the set of all tournaments whose set of vertices are subsets of
{0, 1, · · · , x− 1} for all integer x ≥ 0. We define

χo(G, x) = |{G onto−−→ T : T ∈ Tx}|

as the homomorphic polynomial of an oriented graph G and devote this article to study
this polynomial. The justification for the name is given in Theorem 3.3.

Remark 2.4. Let Kx be the set of all complete graphs whose set of vertices are subsets
of {0, 1, · · · , x − 1}. Given a graph G and a complete graph K let HK(G) be the set
of all distinct onto homomorphisms of G to K. Now define H∗

x(G) = ∪K∈KxHK(G). As
any y-coloring of G, for each y ≤ x, corresponds to an onto homomorphism of G to Ky,
we have χ(G, x) = |H∗

x(G)|. Therefore, the homomorphic polynomial χo(·, ·) is indeed an
“oriented analogue” of the chromatic polynomial χ(·, ·).

3 Homomorphic polynomials

We start by computing the homomorphic polynomial of a tournament.

Proposition 3.1. If T is a tournament on n vertices, then

χo(T, x) = x(x− 1) · · · (x− n+ 1).

Proof. As a tournament T admit onto homomorphisms only to itself, it is enough to count
the number of ways to label the vertices of T using {0, 1, · · · , x− 1}.

The next result proves a formula for computing χo(G, x) of an oriented graph. The
formula along with its derivation is similar to the deletion-contraction formula [7] for
counting chromatic polynomials, even though it is not an exact analogue. For oriented
chromatic polynomial, a similar formula is established by Duffy and Cox [5]. However,
to prove that formula, it was necessary to extend the concept of oriented chromatic
polynomials to mixed graphs.

Before presenting the formula we need to define a few notation. Let G be an oriented
graph and let u, v be two non-adjacent vertices of G. Then G · uv denotes the oriented
graph obtained by identifying the vertices u, v of G and G+uv denotes the oriented graph
obtained by adding the arc uv to G.

Theorem 3.2. Let u, v be two non-adjacent vertices of G. Then

(i) χo(G, x) = χo(G + uv, x) + χo(G + vu, x) where u, v are connected by a directed
2-path.

(ii) χo(G, x) = χo(G ·uv, x)+χo(G+uv, x)+χo(G+vu, x) where u, v are not connected
by a directed 2-path.

6



.

Proof. Let u, v be two non-adjacent vertices of G. If f is a homomorphism of G to a
tournament T , then either f(u) = f(v), or f(u)f(v) is an arc of T , or f(v)f(u) is an arc
of T .

The set of onto homomorphisms having f(u) = f(v) is in a one-to-one correspondence
with the set of onto homomorphisms of G · uv.

Also the set of onto homomorphisms such that f(u)f(v) is an arc is in a one-to-one
correspondence with the set of onto homomorphisms of G+ uv.

Similarly, the set of onto homomorphisms such that f(v)f(u) is an arc is in a one-to-
one correspondence with the set of onto homomorphisms of G+ vu.

Moreover, it is possible to have f(u) = f(v) if and only if u and v are neither adjacent,
nor connected by a directed 2-path [11]. Thus the result follows.

Now we are ready to prove that the function χo(G, x) is indeed a polynomial in x.

Theorem 3.3. Given an oriented graph G, χo(G, x) is a polynomial in x.

Proof. Let us introduce a partial order for oriented graphs to facilitate induction. Let
G ≺ H if one of the following conditions hold:

• |V (G)| < |V (H)|,

• |V (G)| = |V (H)| and |E(G)| > |E(H)|.

Now assume that G is a minimal (with respect to ≺) counter-example to the statement
of the theorem. Thus, due to Proposition 3.1 G is not a tournament. Hence, there exists
a pair of non-adjacent vertices u, v in G. Now apply Theorem 3.2 on G to obtain

χo(G, x) = χo(G+ uv, x) + χo(G+ vu, x)

or
χo(G, x) = χo(G · uv, x) + χo(G+ uv, x) + χo(G+ vu, x)

depending on whether u, v are connected by a directed 2-path or not. In any case, observe
that G+ uv ≺ G, G+ vu ≺ G, and (if it exists) G · uv ≺ G. Thus, due the minimality of
G, each of χo(G + uv, x), χo(G + vu, x), and χo(G · uv, x) (if it exists) are polynomials.
Therefore, we are done using Theorem 3.2.

The above result justifies the name homomorphic polynomial.

4 Associated (2, 3)-rooted tree and factorial form

Notice that Theorem 3.2 enables us to compute the homomorphic polynomial of any ori-
ented graph. Using that idea we will describe a rooted (2, 3)-tree, not neccessarily unique,
associated to each oriented graph G which will enable us to compute its homomorphic
polynomial.

Given an oriented graph G, we describe the design of a rooted (2, 3)-tree TG as follows:
the vertices of TG are oriented graphs with its root being G. Now take two non-adjacent
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vertices u, v of G. If u, v are connected by a directed 2-path, then there are two children
G+uv and G+ vu of G and if u, v are not connected by a directed 2-path, then there are
three children G + uv, G + vu and G · uv of G. We recursively continue this process for
each node of the tree unless that node is a tournament. Thus, finally, we obtain a rooted
(2, 3)-tree TG whose leaves are tournaments. Observe that such a tree is not unique.

Note that if we stop the recursive process of obtaining a TG for an oriented graph G
at any point and the leaves at that point of time are G1, G2, · · · , Gt, then

χo(G, x) = χo(G1, x) + χo(G2, x) + · · ·+ χo(Gt, x).

As the collection of leaves of the tree is a multiset of tournaments after finishing the
whole process, the homomorphic polynomial χo(G, x) of G can be expressed as a sum
of homomorphic polynomials of some tournaments. In other words, let such a multiset
L(G) have ai tournaments of order i for each i ∈ {1, 2, · · · , n}. Then the homomorphic
polynomial of G is

χo(G, x) = anx
(n) + an−1x

(n−1) + · · ·+ a1x
(1)

where x(i) = x(x−1) · · · (x−i+1) is the ith falling factorial of x. The above representation
of χo(G, x) is called its factorial form.

From now on, for convenience, we will denote such a multiset L(G) by

{an · Tn, an−1 · Tn−1, · · · , a1 · T1}.

Observe that as the homomorphic polynomial of an oriented graph G is well defined,
the multiset L(G) will not depend on the choice of the (2, 3)-rooted tree associated to G.

5 Properties

Throughout this section, the set of vertices and arcs of an oriented graph G is denoted by
V (G) and A(G), respectively. Also we would like to suggest the master’s thesis of Hubai
Tamás [8] as a detailed survey on properties of chromatic polynomials for simple graphs.

As hinted in the introduction, the homomorphic polynomial carries information about
the order (number of vertices) and size (number of arcs) of an oriented graph.

Theorem 5.1. Let G be an oriented graph with homomorphic polynomial

χo(G, x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where an ̸= 0. Then |V (G)| = n and |A(G)| =
(
n
2

)
− log2 an.

Proof. Recall the partial order ≺ defined in the proof of Theorem 3.3 and assume that G
is a minimal (with respect to ≺) counter-example to this theorem.

Notice that G cannot be a tournament due to Proposition 3.1. Hence, there exists a
pair of non-adjacent vertices u, v in G. Now apply Theorem 3.2 on G to obtain

χo(G, x) = χo(G+ uv, x) + χo(G+ vu, x)
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or
χo(G, x) = χo(G · uv, x) + χo(G+ uv, x) + χo(G+ vu, x)

depending on whether u, v are connected by a directed 2-path or not. In any case, observe
that G+ uv ≺ G, G+ vu ≺ G, and (if it exists) G · uv ≺ G.

Now, notice that the number of vertices in G is the same as the number of vertices in
G + uv or G + vu and one more than G · uv. Due the minimality of G, the polynomials
χo(G + uv, x), χo(G + vu, x), and χo(G · uv, x) (if it exists) must have degree n, n, and
(n− 1), respectively. Therefore, the polynomial χo(G, x) also has degree n = |V (G)|.

Now let us concentrate on the other part of the statement. Notice that, as χo(G ·uv, x)
has degree (n−1), its coefficients does not contribute in the value of an. To be precise, the
leading coefficient an is a sum of the leading coefficients auv and avu (say) of χo(G+uv, x)
and χo(G+ vu, x), respectively. Also, as both G+ uv and G+ vu has one arc more than
the number of arcs in G, due to the minimality of G, we must have auv = avu. Hence,(

n

2

)
− log2 an =

(
n

2

)
− log2 2auv =

(
n

2

)
− log2 auv − 1 = |A(G+ uv)| − 1 = |A(G)|.

This completes the proof.

Clearly, χo(G, x) is not a monic polynomial like the chromatic polynomial [7] and the
oriented chromatic polynomial [18]. Anyways, it is possible to characterize all the monic
homomorphic polynomials as a simple corollary of Theorem 5.1.

Corollary 5.2. The homomorphic polynomial χo(G, x) is monic if and only if G is a
tournament.

Thus, this seems like the right time for computing homomorphic polynomial of an
oclique.

Proposition 5.3. If O is an oclique on n vertices and m arcs, then

χo(O, x) = 2t · x(x− 1) · · · (x− n+ 1)

where t =
(
n
2

)
−m.

Proof. Recall the partial order ≺ defined in the proof of Theorem 3.3 and assume that
the oclique G is a minimal (with respect to ≺) counter-example to this proposition.

Notice that G cannot be a tournament due to Proposition 3.1. Hence, there exists a
pair of non-adjacent vertices u, v in G. Now apply Theorem 3.2 on G to obtain

χo(G, x) = χo(G+ uv, x) + χo(G+ vu, x)

as u, v are connected by a directed 2-path due to G being an oclique. In any case, observe
that G+ uv ≺ G and G+ vu ≺ G.

Observe that both G+uv and G+vu are ocliques as they are each obtained by adding
an arc to an oclique. Thus, due to the minimality of G, the fact that |A(G + uv, x)| =
|A(G+ vu, x)| = (m+ 1), we must have

χo(G+ uv, x) = χo(G+ vu, x) = 2t
′ · x(x− 1) · · · (x− n+ 1)

9



where t′ =
(
n
2

)
− (m+ 1). Now using the above equation along with the relation

χo(G, x) = χo(G+ uv, x) + χo(G+ vu, x),

we have
χo(G, x) = 2t · x(x− 1) · · · (x− n+ 1)

where t = (t′ + 1) =
(
n
2

)
−m.

Let us look at some other properties of the homomorphic polynomial. It is easy to
show that the constant term of an homomorphic polynomial is 0. This is also a property
of chromatic polynomials [7] and oriented chromatic polynomials [18].

Proposition 5.4. The constant term of an homomorphic polynomial χo(G, x) is 0.

Proof. As any oriented graph G admits 0 oriented 0-coloring, χo(G, 0) = 0. On the other
hand, χo(G, 0) is the constant term of the polynomial.

Among the other standard graphs, we want to compute the homomorphic polynomial
for the independent set In of cardinality n. Surprisingly, it turns out to be a challenging
problem. For convenience, we will figure out the factorial form of the polynomial instead
of its standard form.

Theorem 5.5. For an independent set In on n vertices,

χo(In, x) = anx
(n) + an−1x

(n−1) + · · ·+ a1x
(1)

where an = 2(
n
2), ai = 2(

i
2)
∑

1≤x1≤x2≤···≤xn−i≤i(x1 ·x2 ·x3 ·· · ··xn−i) for all i ∈ {2, 3, · · · , n−
1} and a1 = 1.

The proof of Theorem 5.5 is provided in Section 6.

Let
{
n
k

}
denote the number of ways to partition a set of n labeled objects into k non-

empty unlabeled subsets. These numbers are called the Stirling numbers of the second
kind.

Using the polynomial χo(In, x), it is possible to prove the following inequality involving
Stirling numbers of the second kind.

Theorem 5.6. For any k ≥ 1,

k∑
i=1

2(
i
2) · i! ·

{
n

i

}
· k(i) = χo(In, k).

Proof. To count the number of onto homomorphisms of In to a fixed labeled tournament
on i vertices, we partition the n vertices in i subsets in

{
n
i

}
ways and can map a

particular partition to separate vertices in i! ways. Furthermore, there are total 2(
i
2)

labeled tournaments on i vertices. Therefore, the coefficient of x(i) in the homomorphic

polynomial of In is 2(
i
2) · i! ·

{
n
i

}
·. Thus the result follows.
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Furthermore, using Theorem 5.6 one can compute the Stirling numbers of the second
kind using the polynomial χo(In, x). The forward difference operator [17] of a real function
f(x) is

(∆f)(x) = f(x+ 1)− f(x).

It is known [17] that
(∆x(i))(x) = i · x(i−1) (1)

and that the operator commutes with the operation + as well as scalar multiplication.

Corollary 5.7. For 1 ≤ k ≤ n,{
n

k

}
=

χo(In, k)− χo(In, k − 1)− (∆χo(In, ·))(k − 1)

2(
k
2) · (k!)2

.

Proof. Note that, by Theorem 5.6 we have

χo(In, k)− χo(In, k − 1) =
k∑

i=1

2(
i
2) · i! ·

{
n

i

}
· k(i) −

k−1∑
i=1

2(
i
2) · i! ·

{
n

i

}
· (k − 1)(i)

= 2(
k
2) · k! ·

{
n

k

}
· k(k) +

k−1∑
i=1

2(
i
2) · i! ·

{
n

i

}
· [k(i) − (k − 1)(i)].

Observe the following before continuing with the calculation steps.

[k(i) − (k − 1)(i)]

= k(k − 1) · · · (k − i+ 2)(k − i+ 1)− (k − 1)(k − 2) · · · (k − 1− i+ 2)(k − 1− i+ 1)

= k(k − 1) · · · (k − i+ 1)− (k − 1)(k − 2) · · · (k − i+ 1)(k − i)

= [k − (k − i)][(k − 1)(k − 2) · · · (k − i+ 1)]

= i · (k − 1)(i−1).

Therefore,

χo(In, k)− χo(In, k − 1) = 2(
k
2) · k! ·

{
n

k

}
· k(k) +

k−1∑
i=1

2(
i
2) · i! ·

{
n

i

}
· [k(i) − (k − 1)(i)]

= 2(
k
2) · (k!)2 ·

{
n

k

}
+

k−1∑
i=1

2(
i
2) · i! ·

{
n

i

}
· i · (k − 1)(i−1)

= 2(
k
2) · (k!)2 ·

{
n

k

}
+ (∆χo(In, ·))(k − 1)

The final equality is justified by applying the formula given in eqn(1) to the equality
from Theorem 5.6. Thus we are done.
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Computation of the chromatic polynomial of a disconnected undirected simple graph
has a nice relation with the chromatic polynomials of its components.

Proposition 5.8. [7] Let G be an undirected simple graph with c connected components
G1, G2, · · · , Gc. Then

χ(G, x) = χ(G1, x) · χ(G2, x) · · ·χ(Gc, x).

However, the above condition does not hold at all in the oriented case. Thus, if we
mandate an oriented analogue of the Tutte polynomial to retain the important property of
factoring through components, then we can conclude that the homomorphic polynomial
cannot be a valid candidate for it. However, it is worth studying in details about what
can be a natural analogue of Tutte polynomial in the context of oriented coloring. On
the other hand, in pursuit of a similar result for homomorphic polynomials, we found out
a particular type of construction where such a result holds.

We will describe the construction before stating the result. Let G1, G2, · · · , Gc be c
oriented graphs. Let T be a tournament on c vertices {1, 2, · · · , c}. Now construct the
oriented graph G as follows. Take the disjoint union of G1, G2, · · · , Gc. For each arc ij of
T , put an arc from each vertex of Gi to each vertex of Gj. The so obtained oriented graph
is G. It is worth mentioning that this construction appears frequently while studying
oriented coloring. For instance, such constructions are used to prove lower bounds for
oriented chromatic number of several graph families, such as, outerplanar graphs [19],
partial 2-trees [14], planar graphs [15], graphs on surfaces [2], etc.

Theorem 5.9. Let G be an oriented graph as described above. Then

χo(G, x) = χo(G1, x) · χo(G2, x) · · ·χo(Gc, x).

Proof. Observe that for any i ̸= j, a vertex of Gi is adjacent to a vertex of Gj. Thus,
the images of Gi and Gj are disjoint under any homomorphism. Hence, the formula
described in Theorem 3.2 can be independently applied to Gi and Gj for any distinct
i, j ∈ {1, 2, · · · , c}.

We are going to present a few more results in the same direction. But before presenting
them, let us describe a graph construction.

Let G1 and G2 be two oriented graphs. First take the disjoint union of G1, G2 and
then add a new vertex v to it. After that for each vertex u of G1, add an arc uv and for
each vertex w of G2, add an arc vw. Let us denote the so-obtained oriented graph by
G1 ⋉v G2.

Theorem 5.10. For any non-negative integer k, the homomorphic polynomial

χo(G1 ⋉v G2, k + 1)

is equal to ∑
{k1,k2|0≤k1+k2≤k}

(k + 1)!

k1!k2!(k − k1 − k2)!
· 2k1k2 · n(G1, k1) · n(G2, k2)

12



where n(G, j) satisfies the recurrence relation

n(G, j) = χo(G, j)−
j−1∑
i=1

(
j

i

)
n(G, j)

with the initial condition n(G, 1) = χo(G, 1).

Proof. We want to count the number of ways to choose an onto homomorphism f of
G1 ⋉v G2 to distinct tournaments on vertices labeled by subset of {0, 1, · · · , k}.

Note that the vertex v will always have a distinct image to any other vertices of the
graph with respect to any homomorphism. Thus we can choose the image f(v) of v from
the set {0, 1, · · · , k} in (k + 1) different ways.

Also any vertex of G1 will have a distinct image to that of any vertex of G2 with
respect to any homomorphism as they are end points of a directed 2-path whose middle
vertex is v.

Let n(Gi, ki) denote the number of onto homomorphisms of Gi to all possible tourna-
ments on ki vertices. Notice that, n(Gi, 1) = χo(Gi, 1) and

n(Gi, j) = χo(Gi, j)−
k−1∑
i=1

(
k

j

)
n(Gi, j).

Therefore, given a subset Si ⊆ {0, 1, · · · , k} having cardinality ki, there are exactly
n(Gi, ki) onto homomorphisms of Gi to tournaments of order ki with vertices labeled by
elements of S for each i ∈ {1, 2}.

Furthermore, we can choose a subset S1 of cardinality k1 from the set {0, 1, · · · , k} \
{f(v)} in

(
k
k1

)
ways and can choose a a subset S2 of cardinality k2 from the set {0, 1, · · · , k}\

(S1 ∪ {f(v)}) in
(
k−k1
k2

)
ways.

There can be k1k2 different arcs between the vertices of S1 and S2. Those arcs can be
chosen in 2k1k2 ways.

Thus

χo(G1 ⋉v G2, k + 1)

=
∑

{k1,k2|0≤k1+k2≤k}

(k + 1) ·
(
k

k1

)
·
(
k − k1
k2

)
· 2k1k2 · n(G1, k1) · n(G2, k2)

=
∑

{k1,k2|0≤k1+k2≤k}

(k + 1)!

k1!k2!(k − k1 − k2)!
· 2k1k2 · n(G1, k1) · n(G2, k2).

Hence we are done.

In the construction of G1 ⋉v G2, if we choose G2 (or G1) to be the null graph, then
the resultant graph we obtain is denoted by G+

1 (or G−
2 ). A weaker version of the above

theorem is the following.

Corollary 5.11. Let G be an oriented graph. Then

χo(G
+, k) = χo(G

−, k) = k · χo(G, k − 1).

13



Above we tried to investigate the nature of the homomorphic polynomials of graphs
with a dominating vertex. Now let us probe the opposite aspect.

Theorem 5.12. Let Gv be the disjoint union of an oriented graph G and an isolated
vertex v. If the factorial form of the homomorphic polynomial of G is

χo(G, x) = anx
(n) + an−1x

(n−1) + · · ·+ a1x
(1),

then

χo(Gv, x) = x · [(∆χo(G, ·))(x− 1) +
n∑

i=1

ai · 2i · (x− 1)(i)].

The proof of Theorem 5.12 is provided in Section 6.
The chromatic polynomial for a simple graph has alternative signs of its coefficients [7].

Sopena [18] showed that this property does not hold for oriented chromatic polynomials.
However, the above property holds for homomorphic polynomials.

Theorem 5.13. Let G be an oriented graph with homomorphic polynomial

χo(G, x) = anx
n + an−1x

n−1 + · · ·+ a1x

where an ̸= 0. Then ai ≥ 0 for all i ≡ n (mod 2) and ai ≤ 0, otherwise.

The proof of Theorem 5.13 is provided in Section 6.

An immediate corollary of the above result is the following:

Corollary 5.14. A homomorphic polynomial does not have any negative real root.

Proof. Let G be an oriented graph with homomorphic polynomial χo(G, x) = anx
n +

an−1x
n−1 + · · ·+ a1x where an ̸= 0 and let y be a negative real number.

Thus χo(G, y) > 0 if n is even and χo(G, y) < 0 if n is odd due to Theorem 5.13.

It is worth noting that oriented chromatic polynomials do not posses this property [5].
One other important property of chromatic polynomials that was not satisfied by oriented
chromatic polynomials is the unimodal property [21]. That the coefficients of a chromatic
polynomial have unimodal property was observed by Read [16], later conjectured by
Nijenhuis and Wilf [13], and finally proved by Huh and Katz [9].

Even though we have not proved the unimodal property for homomorphic polynomials
this property was observable without in many examples we have worked, which makes us
propose the following conjecture.

Conjecture 5.15. Let G be an oriented graph with homomorphic polynomial

χo(G, x) = cnx
n + cn−1x

n−1 + · · ·+ c1x

where cn ̸= 0. Then there exists i < n such that

|cn| ≤ |cn−1| ≤ · · · ≤ |cn−i| ≥ |cn−i−1| ≥ · · · |c1|.

14



6 The proofs

We open our proof section with an important lemma.

Lemma 6.1. Let G be the union of a tournament T of order k and an isolated vertex v.
Then L(G) = {2k · Tk+1, k · Tk}.

Proof. Assume that the vertices of T are v1, v2, · · · , vk. Now let us construct a (2, 3)
rooted tree TT as follows. We will recursively use the formula given by Theorem 3.2 on
the pair of vertices v and vi, where i ∈ {1, 2, · · · , k} starts with the initial value 1 and
gets incremented in each step until it reaches k.

Let T i denote the mixed graph obtained by adding the edges vvi for all i ∈ {1, 2, · · · , i}
in G. An orientation of T i refers to an oriented graph obtained by replacing its edges with
arcs (in any possible direction). That means, there can be exactly 2i distinct orientations
of T i. We claim that the (i+1)th level of the rooted tree consists of 2i distinct orientations
of T i and the tournament T for all i ∈ {1, 2, · · · , k + 1}. We will use induction to prove
the correctness of this claim.

For the base case, observe that the root of TT is G. It will have three children G+vv1,
G+ v1v and G · vv1, which will be the level 2 of the tree. Note that G · vv1 is exactly the
tournament T and G + vv1, G + v1v are the two distinct orientations of T 1. Hence our
claim is correct for i = 1.

For the induction step, let the claim be true for all j ≤ i. We want to prove it for
j = (i + 1). For that, notice that among all distinct orientations of T i−1, there exists
exactly one in which v and vi are not connected by a directed 2-path. Thus for that
orientation of T i−1 we will apply the part (ii) of the formula given in Theorem 3.2, while
we will apply part (i) of the formula for the rest. The tournament T will be a child of
the particular orientation of T i−1 where v and vi are not connected by a directed 2-path.
The other children of it, and the children of the rest of the orientations of T i−1 will be all
the orientations of T i. Finally, the tournament T in the ith level will not have any child.
This proves our claim.

The construction of the tree will be complete after k steps, that is, at the (k + 1)th

level. In the (k+1)th level, we have 2k distinct orientations of T k, which are tournaments
on (k + 1) vertices. Moreover, every level, except for the 0th one, contains a leaf which is
the tournament T . This completes the proof.

Now we are ready to prove Theorem 5.12.

Proof of Theorem 5.12. Note that to obtain a (2, 3)-rooted tree TGv associated to Gv,
we can simply include an isolated vertex to each node of TG and continue the branching
process as described in Section 4.

Thus using Lemma 6.1 we obtain χo(Gv, x) =

n∑
i=1

i · ai · x(i) +
n∑

i=1

ai · 2i · x(i+1) =

x ·
n∑

i=1

i · ai · (x− 1)(i−1) + x ·
n∑

i=1

ai · 2i · (x− 1)(i) =
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x · [(∆χo(G, ·))(x− 1) +
n∑

i=1

ai · 2i · (x− 1)(i)].

This concludes the proof. □

For proving Theorem 5.5 we are going to introduce some notations. Let Hk denote the
set of all (labeled) tournaments of order k. Furthermore, let a · Hk denote the multiset

having a copies of each elements belonging to Hk. Note that |Hk| = 2(
k
2) and |a · Hk| =

a · 2(
k
2).

Now we are ready to prove Theorem 5.5.

Proof of Theorem 5.5. To prove the theorem, it is sufficient to prove that the multiset
L(In) of leaves of a (2, 3)-rooted tree TIn associated to In is L(In) = {an · Tn, an−1 ·
Tn−1, · · · , a1 · T1} where ai’s are as in the statement of Theorem 5.5.

We will prove this by induction. For n ≤ 2, the result is trivially true.
Assume that the statement is true for all n ≤ t for some fixed t. Then we want to

show that the statement is true for n = t+ 1 as well.
Note that to obtain a (2, 3)-rooted tree TIt+1 associated to It+1, we can simply include

an isolated vertex to each node of TIt and continue the branching process as described in
Section 4.

For convenience, assume that L(It) = {at · Tt, at−1 · Tt−1, · · · , a1 · T1} where ai’s are as
in the statement of Theorem 5.5 and L(It+1) = {bt+1 · Tt+1, bt · Tt, · · · , b1 · T1}.

Due to Lemma 6.1 bt+1 = 2t · at = 2t · 2(
t
2) = 2(

t+1
2 ). Furthermore, b1 = 1 as there is

only one tournament on 1 vertex and there is exactly one homomorphism of It+1 to that
tournament.

For an i ∈ {2, 3, · · · , t}, we have

bi = 2i−1 · ai−1 + i · ai
= 2i−1 · 2(

i−1
2 )

∑
1≤x1≤x2≤···≤xt−(i−1)≤i−1

(x1 · x2 · x3 · · · xt−(i−1))

+ 2(
i
2) · i ·

∑
1≤x1≤x2≤···≤xt−i≤i

(x1 · x2 · x3 · · ·xt−(i−1))

= 2(
i
2)

∑
1≤x1≤x2≤···≤xt+1−i≤i

(x1 · x2 · x3 · · ·xt+1−i).

This concludes the proof. □

For proving Theorem 5.13 we need another lemma. Note that we can write

x(n) =
n∑

k=0

(−1)kCn,kx
n−k,
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where the coefficients Cn,k are elementary symmetric polynomials in the first positive
(n− 1) integers, given by

Cn,k =
∑

1≤j1<...<jk≤n−1

j1 · · · jk.

For k < 0 or k ≥ n we will set Cn,k = 0 The following lemma proves a recurrence relation
on the coefficients Cn,k.

Lemma 6.2. For all n, k ∈ N and k ∈ Z, we have

Cn,k = (n− 1)Cn−1,k−1 + Cn−1,k.

Proof. The term Cn,k can be written as sum of two expressions e1 + e2, such that every
additive term in e1 has (n − 1) as a factor and every additive term in e2 does not have
(n− 1) as a factor. In e1, (n− 1) can be factored out to give (n− 1) · Cn−1,k−1 and e2 is
Cn−1,k by definition.

Now we are ready to prove Theorem 5.13.

Proof of Theorem 5.13. We will prove this by the method of strong induction on |V (G)|.
For the base case, observe that the statement is correct for all |V (G)| ≤ 2. This is
verifiable using Proposition 3.1 and Theorem 5.5. As induction hypothesis, assume that
the statement holds for all |V (G)| ≤ (n− 1). Thus, if we can show that the statement is
true for |V (G)| = n, we will be done.

Let r =
(|V (G)|

2

)
− |E(G)| be the number of missing arcs in G and let p be the number

of pairs of vertices in G that are neither adjacent nor connected by a directed 2-path.
Note that p ≤ r. Call those p pairs as identifiable pairs.

Let {v1, v2, . . . , vd} be the d distinct vertices among the identifiable pairs. Moreover,
let di be the number of vertices identifiable with vi for each i ∈ {1, 2, · · · , d}. We know
that χo(G, x) =

∑n
i=1 aix

(i) where ai is the number of tournaments on i vertices in L(G)
and |V (G)| = n.

Observe that while constructing an associated (2, 3)-rooted tree TG of G we can stop
in between in such a way that a leaf is either a tournament of order n or a tournament
of order (n − 1) or an oriented graph of order (n − 2). Therefore we can express the
homomorphic polynomial of G as follows:

χo(G, x) = anx
(n) + an−1x

(n−1) +W

where W is a sum of some homomorphic polynomials of oriented graphs of order (n− 2).
Notice that the polynomial W has alternating signs due to the the induction hypothesis.
Hence if we can show that the polynomial anx

(n) + an−1x
(n−1) has alternating signs, then

we will be done.
For this to be true, the absolute value of the ith term in anx

(n) should be greater than
that of the (i− 1)th term in an−1x

(n−1). In other words we need to show that

anCn,i ≥ an−1Cn−1,i−1.
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Furthermore, Lemma 6.2 implies that it is enough to show

an((n− 1)Cn−1,i−1 + Cn−1,i) ≥ an−1Cn−1,i−1,

that is,
Cn−1,i ≥ (an−1

an
− (n− 1))Cn−1,i−1. (2)

While constructing an associated (2, 3)-rooted tree TG of G, if vi is identified with
another vertex to obtain the oriented graph G′, then the number of missing arcs in G′ is
at most r − di. Let TG′ be the subtree of TG rooted at G′ and let L(G′) be the multiset
of the leaves in TG′ . Thus, tournaments of order n− 1 in L(G′) is at most 2r−di .

There are di such vertices with which vi can identify. Hence the number of tournaments
having (n − 1) vertices that has vi identified with another vertex is at most di · 2r−di .
Moreover,

di · 2r−di ≤ 2r−1.

As there are d distinct vertices among the identifiable pairs in G, the number of tourna-
ments having (n− 1) vertices is at most d

2
· 2r−1.

On the other hand, an = 2r by Theorem 5.1. So the ratio an−1

an
is at most d

4
. With this

bound the eqn (2) is satisfied proving that anx
(n) + an−1x

(n−1) has alternating signs. □

7 Conclusions

In this article we introduced and studied homomorphic polynomials for oriented graphs.
To state a few highlights of this work, we would like to mention that we found an interest-
ing relation between homomorphic polynomials for independent sets and Stirling numbers
of the second kind. We also showed that the polynomials possesses the alternating signs
of the coefficients property. Moreover, we conjecture homomorphic polynomials to be
unimodal.

While working through several examples, one question has peeped into our mind:
is homomorphic polynomial a refinement of oriented chromatic polynomial? A precise
restatement of the question is the following.

Question 7.1. Given two oriented graphs G and H, does χo(G, x) = χo(H, x) imply
P (G, x) = P (H, x)?

We have already noted that the converse is false.

Recently, Beaton, Cox, Duffy, and Zolkavich [1] has introduced and studied chromatic
polynomials for 2-edge-colored graphs. One may also consider the analogue of homomor-
phic polynomials in that set up. It can be an interesting task to generalize these notions
for (m,n)-colored mixed graphs [12].
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