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Abstract

The Brussels sprouts game is a two-player pen and paper game which has con-
nections with the structural properties of planar graphs. We generalize the game
for all hereditary graph classes and study it for the family of forests, graphs on
orientable and non-orientable surfaces of genus ≥ 0, sparse planar graphs, etc. In
the process, we also introduce a new game called Circular sprouts and study it as a
tool to solve problems on Brussels sprouts.
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1 Introduction

In 1967, Conway and Paterson [1] introduced the two player pen and paper game called
Sprouts. The game starts with n spots (vertices) on a paper and two players place their
moves alternately. A valid move consists of connecting any spot to itself or another spot
with a curve (edge) and then placing a new spot on the curve drawn (subdivision). There
are two restrictions that needs to be maintained during a move: the curve should not cross
itself or any other curve and a spot can have at most three lines incident to it (degree
three). The first player that cannot make a move, loses. The restrictions make it clear
that the structure, thus obtained, remain planar throughout the game.

Since it is a finite game with no possibility for a draw, there must exist a winning
strategy for either Player 1 or Player 2 based on the initial number of spots. Finding
winning solutions by hand even when initiating the game with a low number of spots seem
difficult, which makes it interesting to study the game. The most recent hand written
analysis done was for seven spots following which only computer generated analysis has
been possible [2]. It was conjectured [2] that the first player has a winning strategy if
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and only if the number of spots, when divided by six, leaves a remainder of three, four,
or five. To date, it has been possible to verify [2] the correctness of the conjecture when
the initial number of spots is n ∈ {1, 2, · · · , 44, 46, 47, 53}.

Conway later introduced an extension to Sprouts, called Brussels sprouts, possibly as
a potential way to approach the study of Sprouts. This is also a two player pen and paper
game where, instead of spots, we start with n crosses. Each cross has four open arms
or open tips and a player can only connect the open tips. So a valid move consists of
connecting any two open tips with a curve and a crossbar is placed anywhere on the newly
made curve. The crossbar creates two new open tips which can be used in subsequent
moves. This game also retains restriction of the curves not crossing each other during
the play from sprouts. As a two player game, each player plays on alternate turns and
the player who cannot make a valid move loses. However, in this case, using the Euler’s
formula for planar graphs, one can easily figure out the player having winning strategy.
In fact, the moves made by the players are redundant, and no matter how you play, the
total number of moves and the winner of the game is a function of the number n of the
initial crosses only.

In this article, we look into a generalised version of Brussels sprouts, where instead of
crosses we have variable open tips for each spot. We also restrict the intermediate steps
to certain hereditary graph classes and study them.

Given a hereditary graph family F , We define the game n-Brussels sprouts for F with
parameters (t1, t2, · · · , tn), denoting it as BSn(F : t1, t2, t3, . . . , tn), as follows. The game
BSn(F : t1, t2, t3, . . . , tn) starts with n spots, having t1, t2, · · · , tn open tips, respectively.
A valid move consists of joining two open tips with a curve followed by drawing a crossbar
on the curve to create two new open tips. The graph obtained by considering the spots
and intersections of a curve and a crossbar as vertices, and the curves joining two such
vertices as edges, must remain inside the family F at all times. The first player unable to
provide a valid move, loses. We will follow standard graph notations according to West [3]
throughout this article unless otherwise stated.

In this article, Section 2 studies the possible number of moves and winning strate-
gies for n-Brussels sprouts for the families of forests, and graphs on orientable and non-
orientable surfaces of genus k ≥ 0. In Section 3, we focus on the families of sparse planar
graphs. In Section 4, we introduce a new, related game called Circular sprouts. We explore
a relation between a particular class of Circular sprouts game and BS2(P : p, q), where P4

denotes the family of triangle-free planar graphs. We figure out all nimbers for the above
mentioned class of Circular sprouts, which helps us analyse the game BS2(P : p, q). Fi-
nally, we conclude the article in Section 6 with the remark that the game Circular sprouts
is interesting on its own merit, and maybe a potential tool for attacking the Sprouts
Conjecture.

2 Forests and graphs on surfaces

To begin the study, let us first consider the family of forests.

Theorem 2.1. Let Ft be the family of forests. Then BSn(Ft : t1, t2, ..., tn) ends after
exactly (n− 1) moves.
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Proof. Since Ft is the family of forests, the resultant graph of terminated BSn(F :
t1, t2, ..., tn) must be a tree. That is, it is possible to make a move until we create a
tree. On the other hand, once we create a tree through our game, it is not possible to
make any other move, as it will create a cycle.

Suppose that the game is terminated after x moves and that G is the resultant graph.
Therefore, |V (G)| = (n + x) as we started with n vertices and in each move we have
added exactly one vertex. Also, |E(G)| = 2x as we started with no edges and in each
move we have added exactly two edges. We know that G is a tree, and therefore, |E(G)| =
|V (G)| − 1. Hence we have 2x = (n+ x)− 1, which implies, x = (n− 1).

Next we will move our attention to the family Ok of graphs that can be drawn on
orientable surfaces of genus k without crossings.

Theorem 2.2. Let Ok be the family of graphs that can be drawn on orientable surfaces
of genus k without crossings. Then the only possible numbers of moves until the game
BSn(Ok : t1, t2, ..., tn) terminates are

(n− 2) + 2j +
n∑

i=1

ti,

where j = 0, 1, · · · , k.
Proof. Suppose the game ends after x moves and the resultant graph after the end of the
game be G. Thus, |V (G)| = n+ x and |E(G)| = 2x as we start with n vertices, 0 edges,
and include exactly one vertex and two edge in each move.

Furthermore, we observe that the game cannot end if a particular face contains two
or more open tips, while in the last move involved in creating a particular face of G will
ensure at least one open tip inside the face. Thus, the number of open tips is equal to the
number of faces of G, that is, |F (G)| =

∑n
i=1 ti.

Notice that, even though G is embedded on Ok, it maybe possible to embed it on an
orientable surface of genus less than k. Let j be the least number for which G can be
embedded on Oj. Thus, G will satisfy the Euler’s formula

|V (G)| − |E(G)|+ |F (G)| = 2− 2j

for orienatable surfaces.
Thus, by replacing the values of |V (G)|, |E(G)| and |F (G)| we get

x+ n− 2x+
n∑

i=1

ti = 2− 2j =⇒ x = (n− 2) + 2j +
n∑

i=1

ti

which completes the proof.

Recall that the orientable surface with genus 0 is nothing but the sphere, and thus,
the family O0 of graphs are nothing but planar graphs. The above theorem characterizes
all possible number of moves for the game BSn(Ok : t1, t2, · · · , tn) to end. Clearly, when
k = 0, that is, for the game BSn(O0 : t1, t2, · · · , tn) the game will end after exactly (n−2)+∑n

i=1 ti moves. Therefore, for planar graphs, the game will end after a constant number
of moves, and the first player will win if and only if that constant is odd irrespective of
how the game gets played.
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Corollary 2.3. The game BSn(O0 : t1, t2, · · · , tn) will end exactly after (n− 2)+
∑n

i=1 ti
moves and the first player will win if and only if n+

∑n
i=1 ti is odd.

Proof. Follows directly from Theorem 2.2 by restricting it for k = 0.

On the other hand, if we consider the game BSn(Ok : t1, t2, · · · , tn) for all k ≥ 1, even
though the number of moves after which the game may end is not a constant, note that
it only differs by an even number. Thus we have the following.

Corollary 2.4. In the game BSn(Ok : t1, t2, · · · , tn) for k ≥ 1, the first player will win
if and only if n+

∑n
i=1 ti is odd.

Proof. Follows directly from Theorem 2.2 by observing that (n− 2) + 2j +
∑n

i=1 ti is odd
if and only if n+

∑n
i=1 ti is odd for all j = 0, 1, · · · , k.

On a similar vein, we also study the family Nk of graphs that can be drawn on non-
orientable surfaces of genus k without crossings.

Theorem 2.5. Let Nk be the family of graphs that can be drawn on non-orientable surfaces
of genus k without crossings. Then the only possible numbers of moves until the game
BSn(Nk : t1, t2, ..., tn) terminates are

(n− 2) + j +
n∑

i=1

ti,

where j = 0, 1, · · · , k.

Proof. Suppose the game ends after x moves and the resultant graph after the end of the
game be G. Thus, |V (G)| = n+ x and |E(G)| = 2x as we start with n vertices, 0 edges,
and include exactly one vertex and two edge in each move.

Furthermore, we observe that the game cannot end if a particular face contains two
or more open tips, while in the last move involved in creating a particular face of G will
ensure at least one open tip inside the face. Thus, the number of open tips is equal to the
number of faces of G, that is, |F (G)| =

∑n
i=1 ti.

Notice that, even though G is embedded on Nk, it maybe possible to embed it on an
non-orientable surface of genus less than k. Let j be least number for which G can be
embedded on Nj. Thus, G will satisfy the Euler’s formula

|V (G)| − |E(G)|+ |F (G)| = 2− j

for non-orienatable surfaces.
Thus, by replacing the values of |V (G)|, |E(G)| and |F (G)| we get

x+ n− 2x+
n∑

i=1

ti = 2− j =⇒ x = (n− 2) + j +
n∑

i=1

ti

which completes the proof.
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Recall that the non-orientable surface with genus 0 is nothing but the projective plane,
and thus, the family N0 of graphs are nothing but the projective planar graphs. Therefore
the following corollary follows directly.

Corollary 2.6. The game BSn(N0 : t1, t2, · · · , tn) will end exactly after (n− 2)+
∑n

i=1 ti
moves and the first player will win if and only if n+

∑n
i=1 ti is odd.

Proof. Follows directly from Theorem 2.5 by restricting it for k = 0.

However, in this case, for higher genus, unlike in the case of orientable surfaces, the
parity of the number of moves after which the game may end is not the same. Therefore,
depending on how the game is played, it maybe won by Player 1 or Player 2. Thus, it
makes sense to analyse winning strategy. We pose this as an open question.

Question 2.7. Which player has an winning strategy for the game BSn(Nk : t1, t2, · · · , tn)
when k ≥ 1?

3 Sparse planar graphs

In this section, let us focus on the family Pg of planar graphs with girth at least g. The
first result shows that if we fix a particular value of n, then number of moves after which
the game BSn(Pg : t1, t2, ..., tn) end is a constant for large values of g.

Theorem 3.1. Let Pg be the family of planar graphs having girth at least g. Then the
game BSn(Pg : t1, t2, · · · , tn) game ends exactly after (n− 1) moves for all g ≥ 2n+ 1.

Proof. Let Gx be the resultant graph after x number of moves. As we start with n vertices
and add one vertex in each move, we have |V (Gx)| = (n + x). Also, we start with zero
edges and add two edges in each move. Thus we have |E(Gx)| = 2x.

Thus after n moves, we have 2n vertices and 2n edges in Gn. This graph must have
a cycle, and as the graph has only 2n vertices, the cycle cannot have length greater than
or equal to (2n+ 1). This is a contradiction.

Hence, the number of moves cannot be more than (n− 1). On the other hand, (n− 1)
moves are also minimum number of moves due to Theorem 2.1.

Next, we focus particularly on the family of triangle-free planar graphs, that is, P4.
We find upper and lower bounds of the number of moves after which the game BSn(P4 :
t1, t2, ..., tn) ends.

Theorem 3.2. The number of moves after which the game BSn(P4 : t1, t2, ..., tn) ends is
between (4 + n) and (n− 2) +

∑n
i=1 ti, where n ≥ 2 and ti ≥ 3.

Proof. Suppose the game ends after x moves and the resultant graph after the end of the
game be G which is a planar graph, in particular. Thus, due to Corollary 2.3 we have
x ≤ (n− 2) +

∑n
i=1 ti.

As we start with n vertices and add one vertex in each move, we have |V (Gx)| = (n+x).
Also, as we start with zero edges and add two edges in each move, we have |E(Gx)| = 2x.
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Furthermore, since ti ≥ 3 and n ≥ 2, we are forced to have |F (G)| ≥ 6. Hence by Euler’s
Formula we have

|V (G)| − |E(G)|+ |F (G)| = 2 =⇒ (x+ n)− 2x+ 6 ≤ 2

=⇒ x ≥ 4 + n

Therefore, (4 + n) ≤ x ≤ (n− 2) +
∑n

i=1 ti.

A natural question we can ask here is whether there is a play of BSn(P4 : t1, t2, ..., tn)
that ends after (n − 2) +

∑n
i=1 ti moves and one that ends after (4 + n) moves. In the

next result, we will see that indeed for n = 2, such plays exist when the ratio of p and q
are at most two.

Theorem 3.3. There exists plays of BS2(P4 : p, q) which ends after (p+ q) and 6 moves,
respectively, for p ≤ q ≤ 2p.

Proof. Let the two spots (vertices) present in the initial stage of the game BS2(P4 : p, q)
be x and y positioned on a horizontal line, x being in the left side of y. Furthermore,
let x1, x2, ..., xp be the open tips coming out of x, arranged in a clockwise order around x
and let y1, y2, ..., yq be the open tips coming out of y, arranged in an anti-clockwise order
around y.

First, we are going to describe the play of BS2(P4 : p, q) which ends after (p + q)
moves for q = (p+ r) where 0 ≤ r ≤ p. Observe that it is enough to describe the required
sequences of the (p+ q) moves in the play.

Let the first move be connecting x1 to y1 with a curve and putting the crossbar t1 on
it. In the subsequent moves, we connect xi to y2i−1 with a curve and put the crossbar ti
on it for i = 2, 3, · · · , r + 1. After that we connect xj to yr+j with a curve and put the
crossbar tj for j = r + 2, r + 3, · · · , p. That means, we have made a total of p moves till
now.

Next, we connect ti to ti+1 with a curve and put a crossbar si on it for i = 1, 2, · · · , p−1,
which are (p−1) more moves. Then we connect si with y2i with a curve and put a crossbar
on it for i = 1, 2, · · · , r, which amounts to r moves. Finally, we connect t1 with tp with a
curve and put a crossbar on it. Observe that, this ends the play as no more moves can
be made and a total of p+ (p− 1)+ r+1 = 2p+ r = p+ q moves are made. Thus we are
done with the first part of the proof.

Secondly, we are going to describe the play of BS2(P4 : p, q) which ends after 6 moves.
Observe that it is enough to describe the required sequences of the 6 moves in the play.

The first two moves in this case are connecting x1 to y1 and x2 to y2 with two curves
and putting the crossbars t1 and t2 on them, respectively. Notice that the above two curves
divide the plane into two regions: R1 containing the open tip x3, R2 not containing it. We
connect t1 and t2 with a curve through R1 and put a crossbar t3 on it. Next, we connect
xp and y3 to t3 two curves and put crossbars on them. Finally, connect t1 and t2 with a
curve through R2 and put a crossbar on it. Observe that, this ends the play as no more
moves can be made and a total of 6 moves are made. Thus, we are done with the second
part of the proof as well.
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From the above theorem, we can notice that the game BS2(P4 : p, q) does not have a
clear winner, and depending on the play, either Player 1 or Player 2 can win. Therefore,
studying which player has winning strategy makes sense. However, when we tried to
do it by hand, it became extremely difficult, even for small values of p and q. Hence,
we felt the need for an alternative technique to attack this problem, with the hope of
building a potential general technique to attack such problems. We are going to discuss
this technique in the next section, while Section 5 will also contain a proof of the following.

Theorem 3.4. There exists a winning strategy for Player 2 in the game BS2(P4 : p, q)
for all p, q ≥ 3.

4 The Circular sprouts game

While studying the game BS2(P4 : p, q), we encountered another similar game which we
found to be interesting. Let us define this new game independently, and in a generalized
form, even though in this article we will study only a specific restriction of it which will
help us in proving Theorem 3.4.

This new game, named the n-Circular sprouts game for the family F with parameters
(t1, t2, · · · , tn), is denoted by the notation CSn(F : t1, t2, · · · , tn), The initial set up of
this game consists of n spots v1, v2, · · · , vn arranged in a clockwise order on the perimeter
of a circle with vi having ti open tips coming out in the interior of the circle. The rest of
the rules of the game is the same as Brussels sprouts with the following added constraint:
the curves drawn by the players must be entirely contained in the interior of the circle.

Next let us observe how this game is related to BS2(P4 : p, q). Let the open tips
around the first spot be x1, x2, · · · , xp arranged in a clockwise order, and let the open
tips around the second spot be y1, y2, · · · , yq arranged in an anti-clockwise order. Observe
that, the very first move by Player 1 in the game BS2(P4 : p, q) is unique up to renaming
of the open tips. Therefore, without loss of generality one can assume that the very first
move is joining the open tip x1 with the open tip y1 with a curve and then placing a
crossbar on it. After that, the second player is forced to join an open tip xi to an open
tip yj, for some i, j ̸= 1. This move will enable us to write the present game as the sum
of two Circular sprouts game: CS4(P4 : i − 2, 1, j − 2, 1) and CS4(P4 : p − i, 1, q − j, 1)
for some i ∈ {2, 3, · · · , p} and j ∈ {2, 3, · · · , q}. Hence it will be enough to study and
understand the games of the type CS4(P4 : p, 1, q, 1).

Before moving forward with the study of these games, we would to point out that
all the games discussed here are two player finite impartial games, and thus their nimber
can be calculated. To conclude which player has a winning strategy for a particular two
player impartial game, it is enough to calculate the nimber value of the game; the second
player has an winning strategy if and only if the nimber of a game is 0 [4].

Recall that, to calculate the nimber of a game X, one first need to generate the entire
game tree having X as its root. Next the leaves of the tree are all assigned nimber equal
to 0, while for the other nodes its nimber is the least non-negative integer which does not
occur as a nimber of any of its children. Let us denote the nimber of a game X by η[X]
for convenience. We know that, if an impartial game X can be written as a sum of two
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impartial games, Y and Z, then the nimber of X can be given by η[X] = η[Y ] ⊕ η[Z],
where ⊕ denote the XOR operation [4].

Thus our objective now is to calculate nimber of the game CS4(P4 : p, 1, q, 1) for
p, q ≥ 0. Note that, the games CS4(P4 : p, 1, q, 1) and CS4(P4 : q, 1, p, 1) are the exact
same games up to symmetry. Thus it is enough to calculate η[CS4(P4 : p, 1, q, 1)] for all
q ≥ p ≥ 0.

We assume CS4P4 : (p, 1, q, 1) to be embedded as p on the left, q on the right and the
singular open tips to be at the top and bottom.

Theorem 4.1. For all 0 ≤ p ≤ q, we have

η[CS4(P4 : p, 1, q, 1)] =


1 if p = q,
4
5
(p+ q − i) + 2⌊ i

4
⌋ if p < q < 2p− ⌊ |p−2|

2
⌋ where i ≡ p+ q(mod 5)

2p if q ≥ 2p− ⌊ |p−2|
2

⌋.

where 1, 2, 3, 4, 5 are the representative of the integers modulo 5.

As the proof is lengthy and complicated, we will move it to the next section.

5 Proof of Theorem 4.1 and 3.4

Let us assume that a typical pictorial representation of the game CS4(P4 : p, 1, q, 1) be as
follows. Let the reference circle of the game be the circle having unit radius and (0, 0) as
its center. After that, let the four spots on it, along with their positions, be x at (−1, 0),
t at (0, 1), y at (1, 0) and b at (0,−1). Furthermore, let x1, x2, ..., xp be the open tips
coming out of x, arranged in a clockwise order around x and let y1, y2, ..., yq be the open
tips coming out of y, arranged in an anti-clockwise order around y. Also let t1 and b1 be
the open tips coming out of t and b, respectively.

Notice that, there can be two types of moves that the first player can perform on the
given initial stage of the game CS4(P4 : p, 1, q, 1). The first type is to connect t1 with b1
with a curve and then put a crossbar on it. However, this creates a game equivalent to the
sum of the two games CS4(P4 : p, 0, 1, 0) and CS4(P4 : 1, 0, q, 0). The second type of move
is to join xp′+1 with yq′+1 with a curve and then put a crossbar on it. This creates a game
equivalent to the sum of the two games CS4(P4 : p′, 1, q′, 1) and CS4(P4 : p′′, 1, q′′, 1),
where p′ ∈ {0, 1, · · · , p′ − 1}, q′ ∈ {0, 1, · · · , q′ − 1}, p′′ = p− p′ − 1 and q′′ = q − q′ − 1.
From now on, we will assume p′ ∈ {0, 1, · · · , p′−1}, q′ ∈ {0, 1, · · · , q′−1}, p′′ = p−p′−1
and q′′ = q − q′ − 1 as general convention for this proof.

Observe that, irrespective of the moves, the game becomes a sum of similar kinds
of games allowing us to use induction. That is why, we will use the method of strong
induction on p to prove this result. Before going to the base case, let us first prove some
useful lemmas.

Lemma 5.1. We have

(i) η[CS4(P4 : 0, 0, q, 0)] = 0,

(ii) η[CS4(P4 : 0, 1, 0, 1)] = 1,
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(iii) η[CS4(P4 : 1, 0, q, 0)] = 1.

(iv) η[CS4(P4 : 0, 1, q, 1)] = 0.

Proof. Notice that the game CS4(P4 : 0, 0, q, 0) does not have any move, and thus trivially,

η[CS4(P4 : 0, 0, q, 0)] = 0. (1)

Similarly, the game CS4(P4 : 0, 1, 0, 1) has exactly one move, that is, connecting t1 and
b1 with a curve, and thus trivially,

η[CS4(P4 : 0, 1, 0, 1)] = 1. (2)

In the game CS4(P4 : 0, 1, q, 1) for q ≥ 1, the only possible first move is to connect t1
with b1 by a curve. This can be expressed as a sum of the games CS4(P4 : 0, 0, 1, 0) and
CS4(P4 : 1, 0, q, 0). We already know that η[CS4(P4 : 0, 0, q, 0)] = 0 by equation (1), and
one can observe that the only possible move in the game CS4(P4 : 1, 0, q, 0) is to connect
x1 to some yq′+1 after which the game will end. Therefore,

η[CS4(P4 : 1, 0, q, 0)] = 1. (3)

Hence the only child of the game CS4(P4 : 0, 1, q, 1) has nimber

η[CS4(P4 : 0, 0, q, 0)]⊕ η[CS4(P4 : 1, 0, q, 0)] = 1 (4)

which implies
η[CS4(P4 : 0, 1, q, 1)] = 0. (5)

This completes the proof.

This implies that the formula given in the statement of Theorem 4.1 hold when p = 0.

Lemma 5.2. We have

η[CS4(P4 : 1, 1, q, 1)] =

{
1 if q = 1,

2 if q ≥ 2.
(6)

Proof. The game CS4(P4 : 1, 1, q, 1) has two types of child in the game tree. The first,
obtained by connecting t1 and b1 with a curve, can be expressed as the sum of CS4(P4 :
1, 0, 1, 0) and CS4(P4 : 1, 0, q, 0). This game has nimber

η[CS4(P4 : 1, 0, 1, 0)]⊕ η[CS4(P4 : 1, 0, q, 0)] = 1⊕ 1 = 0 (7)

due to equation (2) and (3). The second child is obtained by connecting x1 and yq′+1, and
thus can be expressed as a sum of CS4(P4 : 0, 1, q′, 1) and CS4(P4 : 0, 1, q′′, 1), and thus
has nimber

η[CS4(P4 : 0, 1, q
′, 1)]⊕ η[CS4(P4 : 0, 1, q

′′, 1)] = 1⊕ 1 = 0 (8)
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for q′, q′′ ≥ 1 due to equation (5). On the other hand, using equation (2) and (5), when
q′ = 0 (or q′′ = 0) we have

η[CS4(P4 : 0, 1, 0, 1)]⊕ η[CS4(P4 : 0, 1, q − 1, 1)] = 1⊕ 0 = 1 (9)

for q ≥ 2. Notice that, if q = 1, then

η[CS4(P4 : 0, 1, 0, 1)]⊕ η[CS4(P4 : 0, 1, 0, 1)] = 1⊕ 1 = 0. (10)

That means, the game CS4(P4 : 1, 1, q, 1) has child with nimber 0 and 1 when q ≥ 2. On
the other hand, if q = 1, it has child with only nimber 0. Therefore, we have

η[CS4(P4 : 1, 1, q, 1)] =

{
1 if q = 1,

2 if q ≥ 2.
(11)

This completes the proof.

Thus, the formula given in the statement is true for p = 1 as well.

Hence we have verified the formula to be true for p ≤ 1, and this is the base case of
our induction. Let us assume that the formula is true for all η[CS4(P4 : p − i, 1, q, 1)],
where i ∈ {1, 2, · · · , p}. For the induction step, we need to show that it is true for
η[CS4(P4 : p, 1, q, 1)] as well. We will break our induction step of the proof across several
lemmas.

However, before that we will make a general observation useful for all cases.

Lemma 5.3. For all 0 ≤ p ≤ q,

η[CS4(P4 : p, 1, q, 1)] ≥ 1. (12)

Proof. Notice that each of the games CS4(P4 : p, 1, q, 1) has one child which is expressed
as a sum of CS4(P4 : p, 0, 1, 0) and CS4(P4 : 1, 0, q, 0). By equation 3, this game has
nimber

η[CS4(P4 : p, 0, 1, 0)]⊕ η[CS4(P4 : 1, 0, q, 0)] = 1⊕ 1 = 0. (13)

Therefore, all the games of the type CS4(P4 : p, 1, q, 1) has a child with nimber 0. This
implies

η[CS4(P4 : p, 1, q, 1)] ≥ 1. (14)

Hence the proof.

Now we are ready to handle the case where p = q.

Lemma 5.4. If η[CS4(P4 : n, 1, q, 1)] satisfy the formula given in the statement of The-
orem 4.1 for all n ≤ p− 1, then η[CS4(P4 : p, 1, p, 1)] = 1.

Proof. When p = q, note that because of Lemma 5.3 it is enough to show that none of
the children of CS4(P4 : p, 1, q, 1) in the game tree has nimber equal to 1. That is, we
need to show that

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] ̸= 1.

10



Notice that, by our induction hypothesis, both η[CS4(P4 : p′, 1, q′, 1)] and η[CS4(P4 :
p′′, 1, q′′, 1)] has even values unless p′ = q′, and hence, as ⊕ of two even numbers is
even, we are done unless p′ = q′. If p′ = q′, then both η[CS4(P4 : p′, 1, q′, 1)] and
η[CS4(P4 : p

′′, 1, q′′, 1)] are equal to 1. Thus, in this case also,

η[CS4(P4 : p
′, 1, p′, 1)]⊕ η[CS4(P4 : p

′′, 1, p′′, 1)] = 1⊕ 1 = 0.

This implies that
η[CS4(P4 : p, 1, p, 1)] = 1

and concludes the proof.

Lemma 5.5. If η[CS4(P4 : n, 1, q, 1)] satisfy the formula given in the statement of The-
orem 4.1 for all n ≤ p− 1, then η[CS4(P4 : p, 1, q, 1)] = 2p when q ≥ 2p− ⌊p−2

2
⌋.

Proof. When q ≥ 2p − ⌊p−2
2
⌋, we need to show that none of the children of CS4(P4 :

p, 1, q, 1) in the game tree has nimber equal to 2p, where as, for each i ∈ {1, 2, · · · , 2p−1},
there exists a child of CS4(P4 : p, 1, q, 1) in the game tree which has nimber equal to i.

First we will show that the odd numbers less than 2p appear as the nimbers of the
children of CS4(P4 : p, 1, q, 1) in the game tree. For that, let us consider the children
that can be expressed as sum of the games CS4(P4 : p

′, 1, q′, 1) and CS4(P4 : p
′′, 1, q′′, 1),

where q ≥ 2p− ⌊p−2
2
⌋ and p′ = q′. In this scenario, note that we have

η[CS4(P4 : p
′, 1, q′, 1)] = η[CS4(P4 : p

′, 1, p′, 1)] = 1

by induction hypothesis. Moreover, observe that

q′′ = q − 1− q′ ≥ (2p− ⌊p− 2

2
⌋)− 1− p′

≥ 2p− 2p′ − ⌊p
′′ − 2

2
⌋+ ⌊p

′′ − 2

2
⌋ − ⌊p− 2

2
⌋ − 2

≥ 2(p− p′ − 1)− ⌊p
′′ − 2

2
⌋ −

(
⌊p− 2

2
⌋ − ⌊p

′′ − 2

2
⌋
)

≥ 2p′′ − ⌊p
′′ − 2

2
⌋.

This implies
η[CS4(P4 : p

′′, 1, q′′, 1)] = 2p′′

due to the induction hypothesis. Therefore,

η[CS4(P4 : p
′, 1, p′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] = 1⊕ 2p′′ = 2p′′ + 1

is nimber of a child of CS4(P4 : p, 1, q, 1) in the game tree. As p′′ ∈ {0, 1, · · · , p− 1}, the
above covers all odd numbers less than 2p.

Next we will show that the even numbers less than 2p appear as the nimbers of the
children of CS4(P4 : p, 1, q, 1) in the game tree. For that, let us consider the children that
can be expressed as sum of the games CS4(P4 : p

′, 1, q− 1, 1) and CS4(P4 : p
′′, 1, 0, 1). In

this scenario, note that we have

η[CS4(P4 : p
′′, 1, 0, 1)] = 0

11



by equation (5). Also

q − 1 ≥ (2p− ⌊p− 2

2
⌋)− 1

≥ (2p′ − ⌊p
′ − 2

2
⌋)−

(
⌊p− 2

2
⌋ − ⌊p

′ − 2

2
⌋
)

≥ 2p′ − ⌊p
′ − 2

2
⌋.

This implies
η[CS4(P4 : p

′, 1, q − 1, 1)] = 2p′

due to the induction hypothesis. Therefore,

η[CS4(P4 : p
′, 1, q − 1, 1)]⊕ η[CS4(P4 : p

′′, 1, 0, 1)] = 2p′ ⊕ 0 = 2p′

is nimber of a child of CS4(P4 : p, 1, q, 1) in the game tree. As p′ ∈ {0, 1, · · · , p− 1}, the
above covers all even numbers less than 2p.

Now let us show that there is no child of CS4(P4 : p, 1, q, 1) in the game tree whose
nimber equals 2p. Notice that, in general

η[CS4(P4 : p
′, 1, q′, 1)] ≤ 2p′

due to the induction hypothesis. Therefore,

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] ≤ 2p′ + 2p′′ = 2(p′ + p− p′ − 1) < 2p.

Hence we are done.

When p < q < 2p− ⌊p−2
2
⌋, proving the induction step needs a careful treatment. Due

to equation (14), we know that

η[CS4(P4 : p, 1, q, 1)] ≥ 1.

Now to prove this case, first we need to show that

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] ̸= η[CS4(P4 : p, 1, q, 1)].

Lemma 5.6. If η[CS4(P4 : n, 1, q, 1)] satisfy the formula given in the statement of The-
orem 4.1 for all n ≤ p− 1, then

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] ̸= η[CS4(P4 : p, 1, q, 1)]

where p < q < 2p− ⌊p−2
2
⌋.

Proof. Without loss of generality, let us assume q′ ≥ p′. When p′ = q′, we have

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] ̸= η[CS4(P4 : p, 1, q, 1)]

as the left hand side is of the form 1⊕ an even number, that is, an odd number while the
right hand side is an even number due to induction hypothesis.
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When p′ < q′, suppose that p′ < q′ < 2p′ − ⌊p′−2
2

⌋ and p′′ < q′′ < 2p′′ − ⌊p′′−2
2

⌋ (or

q′′ < p′′ < 2q′′ − ⌊ q′′−2
2

⌋). Moreover, let i ≡ (p + q) (mod 5), i′ ≡ (p′ + q′) (mod 5), and
i′′ ≡ (p′′+q′′) (mod 5). In this scenario, i′ and i′′ can have some specific values depending
on i. If we know these values, then it is possible to compute and compare the terms

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)].

and
η[CS4(P4 : p, 1, q, 1)].

We present each of these cases in the following table which shows that

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] < η[CS4(P4 : p, 1, q, 1)]

in this scenario. For convenience, we will demonstrate a sample calculation.
If i = 4, the possible values for {i′, i′′} are {5, 2}, {1, 1}, and {3, 4}. When {i′, i′′} =

{5, 2}

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] =
4

5
(p+ q − 2− 5− 2) + 2

=
4

5
(p+ q + 1)− 6

̸= 4

5
(p+ q + 1)− 2

= η[CS4(P4 : p, 1, q, 1)].

Similarly, we can calculate for all cases. We have summarized these results in a
consolidated manner in Table 1.

When q′ ≥ 2p′ − |⌊p′−2
2

⌋|, then note that

q′′ = q − q′ − 1 ≤ q − 2p′ + |⌊p
′ − 2

2
⌋| − 1

≤ q − 2p′ +
p′

2
− 2

≤ q − 1.5(p− p′′ − 1)− 2

≤ (q − 1.5p) + 1.5p′′ − 0.5

< 1.5p′′ − 1

≤ 2p′′ − ⌊p
′′ − 2

2
⌋.

(15)
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η[CS4(P4 : p
′, 1, q′, 1)]

i {i′, i′′} ⊕ η[CS4(P4 : p, 1, q, 1)]
η[CS4(P4 : p

′′, 1, q′′, 1)]
{5, 3} 4

5
(p+ q)− 6

5 {1, 2} 4
5
(p+ q)− 4 4

5
(p+ q)− 2

{4, 4} 4
5
(p+ q)− 4

{5, 2} 4
5
(p+ q + 1)− 6

4 {1, 1} 4
5
(p+ q + 1)− 4 4

5
(p+ q + 1)− 2

{3, 4} 4
5
(p+ q + 1)− 6

{5, 1} 4
5
(p+ q + 2)− 6

3 {2, 4} 4
5
(p+ q + 2)− 6 4

5
(p+ q + 2)− 4

{3, 3} 4
5
(p+ q + 2)− 8

{5, 5} 4
5
(p+ q + 3)− 8

2 {4, 1} 4
5
(p+ q + 3)− 6 4

5
(p+ q + 3)− 4

{3, 2} 4
5
(p+ q + 3)− 8

{5, 4} 4
5
(p+ q + 4)− 8

1 {3, 1} 4
5
(p+ q + 4)− 8 4

5
(p+ q + 4)− 4

{2, 2} 4
5
(p+ q + 4)− 8

Table 1: Comparison table.

Thus, if p′′ + q′′ ≡ i′′ (mod 5), we must have

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)]

≤ 2p′ +
4

5
(p′′ + q′′ − i′′) + 2⌊i

′′

4
⌋

= 2p′ +
4

5
((p− p′ − 1) + (q − q′ − 1)− i′′) + 2⌊i

′′

4
⌋

= 2p′ +
4

5
(p+ q)− 4

5
((p′ + q′) + 2 + i′′) + 2⌊i

′′

4
⌋

≤ 2p′ +
4

5
(p+ q)− 4

5
((p′ + 2p′ − ⌊p

′ − 2

2
⌋) + 2 + i′′) + 2⌊i

′′

4
⌋

≤ 2p′ +
4

5
(p+ q)− 4

5
((p′ + 2p′ − p′

2
+ 1) + 2 + i′′) + 2⌊i

′′

4
⌋

≤ 4

5
(p+ q)− 4

5
(3 + i′′) + 2⌊i

′′

4
⌋

<
4

5
(p+ q − i) + 2⌊ i

4
⌋

where p+ q ≡ i (mod 5). Note that, in the last step, strict inequality hold irrespective of
the values of i and i′′.

Now it remains to show that for each x ∈ {1, 2, · · · , 4
5
(p+q−i)+2⌊ i

4
⌋} where (p+q) ≡ i

(mod 5) it is possible to find p′ and q′ such that

η[CS4(P4 : p
′, 1, q′, 1)]⊕ η[CS4(P4 : p

′′, 1, q′′, 1)] = x.
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Lemma 5.7. Suppose that η[CS4(P4 : n, 1, q, 1)] satisfy the formula given in the statement
of Theorem 4.1 for all n ≤ p − 1 where p < q < 2p − ⌊p−2

2
⌋. Then there exists a

child of the game CS4(P4 : p, 1, q, 1) in its game tree having nimber equal to l where
l ∈ {1, 3, · · · , 4

5
(p+ q − i) + 2⌊ i

4
⌋ − 1} and (p+ q) ≡ i (mod 5).

Proof. Let 4
5
(p + q − i) + 2⌊ i

4
⌋ = n1 and let η[CS4(P4 : p − 1, 1, q − 1, 1)] = n2. We will

show that n2 ≥ n1 − 2.
If p− 1 < q− 1 < 2(p− 1)− ⌊p−3

2
⌋, then, assuming (p+ q− 2) ≡ i2 (mod 5), we have

n2 − n1 =
4

5
(p− 1 + q − 1− i2) + 2⌊i2

4
⌋} − 4

5
(p+ q − i) + 2⌊ i

4
⌋

=
4

5
(i− i2 − 2) + 2⌊i2

4
⌋ − 2⌊ i

4
⌋.

Notice that, i = 3, 4, 5 implies i2 = i− 2. Thus

n2 − n1 = 2⌊i2
4
⌋ − 2⌊ i

4
⌋ ≥ −2.

If i = 1, 2, then i2 = i+ 3 which implies

n2 − n1 = −4 + 2⌊i2
4
⌋ − 2⌊ i

4
⌋ ≥ −2.

If 2(p − 1) − ⌊p−3
2
⌋ ≤ q − 1 < 2p − ⌊p−2

2
⌋, then as the maximum difference between the

lower and upper bound of q − 1 is at most 1, and as q − 1 is an integer, we can say that

q = 2(p− 1)− ⌊p− 3

2
⌋+ 1.

Hence

n2 − n1 = 2(p− 1)− 4

5
(p+ q − i) + 2⌊ i

4
⌋

≥ 2p− 2− 4

5
(p+ 2p− 2− ⌊p− 3

2
⌋+ 1− i) + 2⌊ i

4
⌋

≥ 2p− 2− 4

5
(3p− 1− (

p− 3

2
) + 0.5− i) + 2⌊ i

4
⌋

= 2p− 2− 4

5
(
5p

2
+ 1− i) + 2⌊ i

4
⌋

= −2− 4

5
(1− i) + 2⌊ i

4
⌋

≥ −2.

Therefore, n2 ≥ n1 − 2. That means, for each non-negative integer less than n2 the
game CS4(P4 : p− 1, 1, q − 1, 1) has a child having nimber equal to it. In particular, for
each non-negative odd integer less than n2, CS4(P4 : p− 1, 1, q − 1, 1) has a child having
nimber equal to it.
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Let l ∈ {1, 3, · · · , n1− 3} be an odd integer. We know that, CS4(P4 : p− 1, 1, q− 1, 1)
has a child with nimber l. However, we also know that the child must be obtained by
connecting xa+1 and ya+1 with a curve, and its nimber is given by

η[CS4(P4 : a, 1, a, 1)]⊕ η[CS4(P4 : p− a− 2, 1, q − a− 2, 1)] = l.

As η[CS4(P4 : a, 1, a, 1)] = 1, we must have

η[CS4(P4 : p− a− 2, 1, q − a− 2, 1)] = l − 1.

Thus the child of CS4(P4 : p, 1, q, 1) obtained by connecting xa+2 and ya+2 has nimber

η[CS4(P4 : a+ 1, 1, a+ 1, 1)]⊕ η[CS4(P4 : p− a− 2, 1, q − a− 2, 1)] = l.

Moreover, the child of CS4(P4 : p, 1, q, 1) obtained by connecting 1 and y1 has nimber

η[CS4(P4 : 0, 1, 0, 1)]⊕ η[CS4(P4 : p− 1, 1, q − 1, 1)] = n1 − 1.

Thus, for each l ∈ {1, 3, · · · , n1 − 1} there exists a child of CS4(P4 : p, 1, q, 1) having
nimber equal to l.

Last but not the least, we are going to show that the game CS4(P4 : p, 1, q, 1) has
child having nimber equal to l for all even positive integers less than 4

5
(p+ q− i) + 2⌊ i

4
⌋}

where (p+ q) ≡ i (mod 5).

Lemma 5.8. Suppose that η[CS4(P4 : n, 1, q, 1)] satisfy the formula given in the statement
of Theorem 4.1 for all n ≤ p − 1 where p < q < 2p − ⌊p−2

2
⌋. Then there exists a

child of the game CS4(P4 : p, 1, q, 1) in its game tree having nimber equal to l where
l ∈ {2, 4, · · · , 4

5
(p+ q − i) + 2⌊ i

4
⌋ − 2} and (p+ q) ≡ i (mod 5).

Proof. Let 4
5
(p+ q − i) + 2⌊ i

4
⌋ = n1. We want to show that

η[CS4(P4 : n, 1, q, 1)] = n1.

To do so, we will consider some cases. The first case is if

(q + 1) ≥ 2(p− 1)− ⌊(p− 1)− 2

2
⌋.

This implies

q − 1 ≥ 2(p− 1)− ⌊(p− 1)− 2

2
⌋ − 2

≥ 2(p− 3)− ⌊(p− 3)− 2

2
⌋.

Additionally, if p is even, then

q − 1 ≥ 2(p− 1)− ⌊(p− 1)− 2

2
⌋ − 2

≥ 2(p− 2)− ⌊(p− 2)− 2

2
⌋.
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As we also know that

q < 2p− ⌊p− 2

2
⌋.

Hence

n1 =
4

5
(p+ q − i) + 2⌊ i

4
⌋

<
4

5
(p+ 2p− ⌊p− 2

2
⌋ − i) + 2⌊ i

4
⌋

=⇒ n1 ≤
4

5
(3p− p

2
+ 1.5− i) + 2⌊ i

4
⌋ − 1

≤ 2p+
4

5
(1.5− i) + 2⌊ i

4
⌋ − 1

=⇒ n1 < 2p

=⇒ n1 ≤ 2(p− 1).

In these cases, consider the child of CS4(P4 : p, 1, q, 1) which can be written as the
sum of CS4(P4 : p

′, 1, q− 1, 1) and CS4(P4 : p− p′ − 1, 1, 0, 1) where q− 1 ≥ 2p′ − ⌊p′−2
2

⌋.
Notice that

η[CS4(P4 : p− p′ − 1, 1, 0, 1)] = 0

according to equation (5) and

η[CS4(P4 : p
′, 1, q − 1, 1)] = 2p′.

Observe that, this will cover all the even numbers up to 2(p− 3), and up to 2(p− 2) if p
is even.

Therefore, we only need to think about the case when p is odd and n1 = 2(p− 1). In
this case, n1 is divisible by 4. Consider the child obtained by connecting xp−1 with yq−2.
This will imply that CS4(P4 : p, 1, q, 1) has a child having nimber

η[CS4(P4 : p− 2, 1, q − 3, 1)]⊕ η[CS4(P4 : 1, 1, 2, 1)] = (n1 − 4)⊕ 2 = n1 − 2.

Thus we are done when (q + 1) ≥ 2(p− 1)− ⌊ (p−1)−2
2

⌋.

On the other hand, if (q+ 1) < 2(p− 1)− ⌊ (p−1)−2
2

⌋, then p < q implies p− 1 < q+ 1,
by induction hypothesis we have η[CS4(P4 : p− 1, 1, q + 1, 1)] = n1.

Thus, in particular, for each l ∈ {2, 4, · · · , n1 − 2}, there exists a child of CS4(P4 :
p − 1, 1, q + 1, 1) having nimber equal to l. Observe that, this child must be a sum of
two games of the form CS4(P4 : p′, 1, q′, 1) and CS4(P4 : p − p′ − 2, 1, q − q′, 1). Due to
equation (15), we know that one of these child will satisfy the conditions of the second
line of the formula given in Theorem 4.1.

Next consider the child of CS4(P4 : p, 1, q, 1) obtained by connecting xp′+1 and yq′+1

can be expressed as a sum of the games CS4(P4 : p
′, 1, q′, 1) and CS4(P4 : p−p′−1, 1, q−

q′−1, 1). Due to equation (15), we know that one of these child will satisfy the conditions
of the second line of the formula given in Theorem 4.1.

In fact as p ̸= q, it is possible to assume without loss of generality that both CS4(P4 :
p− p′ − 2, 1, q− q′, 1) and CS4(P4 : p− p′ − 1, 1, q− q′ − 1, 1) satisfy the conditions of the
second line of the formula given in Theorem 4.1.
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This implies

η[CS4(P4 : p− p′ − 2, 1, q − q′, 1)] =
4

5
(p+ q − p′ − q′ − 2− i1) + 2⌊i1

2
⌋

= η[CS4(P4 : p− p′ − 1, 1, q − q′ − 1, 1)].

Thus, we can conclude that this game, expressed as a sum of CS4(P4 : p
′, 1, q′, 1) and

CS4(P4 : p − p′ − 1, 1, q − q′ − 1, 1), which is a child of CS4(P4 : p, 1, q, 1), has nimber
equal to l.

At last we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. As η[BS2(P4 : p, q)] = 0 for all p, q ≥ 3, the second player must
have a winning strategy.

Using this we can calculate the nimber of the game BS2(P4 : p, q).

Corollary 5.9. The nimber of the game BS2(P4 : p, q) is 0 for all p, q ≥ 3.

Proof. Observe that in the game tree of BS2(P4 : p, q), the root has exactly one child
as the very first move is unique up to renaming of open tips. Moreover, that child will
have a child which can be expressed as a sum of CS4(p, 1, 1, 1) and CS4(1, 1, q, 1). As
η[CS4(t1, 1, 1, 1)]⊕ η[CS4(1, 1, t3, 1)] = 0 due to Theorem 4.1, the child of the root must
have a non-zero nimber, and thus the root must have its nimber equal to 0.

6 Conclusions

We studied two variants of the combinatorial game Sprouts, namely, the previously known
Brussels sprouts - albeit a generalization introduced by us, and the Circular sprouts - a
related game introduced as a tool to study a special case of Brussels sprouts. We ended
up discovering that the game Circular sprouts is interesting on its own, and we propose to
study it in general. Moreover, we also think that the game Circular sprouts is potentially
a tool to attack the long standing Sprouts Conjecture.
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