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(b) Université de Bordeaux, LaBRI, France.

Abstract

An (n,m)-graph has n different types of arcs and m different types of edges.
A homomorphism of an (n,m)-graph G to an (n,m)-graph H is a vertex mapping
that preserves adjacency types and directions. Notice that, in an (n,m)-graph a
vertex can possibly have (2n +m) different types of neighbors. In this article, we
study homomorphisms of (n,m)-graphs while an Abelian group acts on the set of
different types of neighbors of a vertex.

Keywords: colored mixed graphs, switching, homomorphism, categorical product, chro-
matic number.

1 Introduction

A graph homomorphism, that is, an edge-preserving vertex mapping of a graph G to a
graph H, also known as an H-coloring of G, was introduced as a generalization of color-
ing [5]. It allows us to unify certain important constraint satisfaction problems, especially
related to scheduling and frequency assignments, which are otherwise expressed as vari-
ous coloring and labeling problems on graphs. Thus the notion of graph homomorphism
manages to capture a wide range of important applications in an uniform setup. When
viewed as an operation on the set of all graphs, it induces rich algebraic structures: a
quasiorder (and a partial order), a lattice, and a category.

The study of graph homomorphism can be characterized into three major branches:

1. The study of various application motivated optimization problems modeled using
graph homomorphisms. These usually involve finding an H having certain pre-
scribed properties such that every member of a graph family F is H-colorable.

∗This work is partially supported by IFCAM project “Applications of graph homomor-
phisms” (MA/IFCAM/18/39), SERB-SRG project “Graph homomorphisms and its extensions”
(SRG/2020/001575), SERB-MATRICS “Oriented chromatic and clique number of planar graphs”
(MTR/2021/000858), and NBHM project “Graph theoretic model of Channel Assignment Problem
(CAP) in wireless network” (NBHM/RP-8 (2020)/Fresh).
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2. The study of the algorithmic aspects of the H-coloring problem, including charac-
terizing its dichotomy, and finding approximation or parametrized algorithms for
the hard problems.

3. The study of the algebraic structures that gets induced by the notion of graph
homomorphisms.

Unsurprisingly, these three areas of research have interdependencies and connections.
The notion of graph homomorphisms, initially introduced for undirected and directed
graphs, later got extended to 2-edge-colored graphs [11], k-edge-colored graphs [1] and
(n,m)-colored mixed graphs [14]. These graphs, due to their various types of adjacen-
cies, manages to capture complex relational structures and are useful for mathematical
modeling. For instance, the query analysis problem in graph database, the databases
that are now popularly used to handle highly interrelated data networks (such as, social
networks like Facebook, Twitter, etc.), is modeled on homomorphisms of (n,m)-colored
mixed graphs.

Moreover, researchers have started further extending the studies by exploring the effect
of switch operation on homomorphisms. Notably, homomorphisms of signed graphs, which
is essentially obtained by observing the effect of the switch operation on 2-edge-colored
graphs, has gained immense popularity [13, 12, 16, 15] in recent times due to its strong
connection with the graph minor theory. Also, graph homomorphism with respect to some
other switch-like operations, such as, push operation on oriented graphs [8], cyclic switch
on k-edge-colored graphs [3], and switching (n,m)-colored mixed graphs with respect to
Abelian groups of special type (which does not allow switching an edge to an arc or vice
versa) [4, 10] to list a few, has been recently studied.

Naturally, all the three main branches of research listed above in context of graph ho-
momorphism is also explored for the above mentioned extensions and variants. However,
in comparison, the global algebraic structure is a less explored branch for the extensions.

In this article, we are going to introduce a generalized switch operation on (n,m)-
colored mixed graphs and study some of its algebraic aspects. The results proved here
will be valid for all known graph homomorphism variants, to the best of our knowledge.

2 Homomorphisms of (n,m)-graphs and generalized

switch

Throughout this article, we will follow the standard graph theoretic, algebraic and cate-
gory theory notions from West [17], Artin [2], and Jacobson [6], respectively.

Nešetřil and Raspaud [14] introduced the concept of colored mixed graphs in 2000 as
a generalization to the study of oriented and k-edge-colored graphs. An (n,m)-graph G is
a graph with vertex set V (G), arc set A(G) and edge set E(G), where each arc is colored
with one of the n colors from {1, 2, · · · , n} and each edge is colored with one of the m
colors from {n+1, n+2, · · · , n+m}. In particular, if there is an arc of color i from u to v,
we say that v is an i-neighbor of u, or equivalently, u is a −i-neighbor of v. Furthermore,
if there is an edge of color j between u and v, then we say that u (resp., v) is a j-neighbor
of v (resp., u).
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Let Γ ⊆ S2n+m, where S2n+m is the permutation group on An,m = {±1, · · · ,±n, n +
1, · · · , n +m}. To Γ-switch a vertex v of an (n,m)-graph is to change its incident arcs
and edges in such a way that its t-neighbors become σ(t)-neighbors, for some σ ∈ Γ and
for all t ∈ An,m. For an element σ ∈ S2n+m, a σ-switch of a vertex is defined similarly.
An (n,m)-graph G′ obtained by a sequence of Γ-switches performed on the vertices of G
is a Γ-equivalent graph of G.

A Γ-homomorphism of G to H is a function f : V (G) → V (H) such that there exists
a Γ-equivalent graph G′ of G satisfying the following: if u is a t-neighbor of v in G′, then

f(u) is a t-neighbor of f(v) in H. We denote this by G
Γ−→ H. A Γ-isomorphism of G to

H is a bijective Γ-homomorphism whose inverse is also a Γ-homomorphism. We denote
this by G ≡Γ H.

Observe that, if Γ = ⟨e⟩ is the singleton group with the identity element e, then our
Γ-homomorphism definition becomes the same as the colored homomorphism of (n,m)-
graphs defined by Nešetřil and Raspaud [14].

We will restrict ourselves to Abelian subgroups Γ of S2n+m unless otherwise stated. A
similar study when Γ is non-Abelian is done in [7]. A consistent group Γ ⊂ S2n+m is such
that each orbit induced by Γ acting on the set An,m contains −i if and only if it contains
i for i ∈ {1, 2, · · · , n}.

3 Basic algebraic properties

Let Γ ⊆ S2n+m be a group and letG be an (n,m)-graph with set of vertices {v1, v2, · · · , vk}.
Let G∗ be the (n,m)-graph having vertices of the type vσi where i ∈ {1, 2, · · · , k} and
σ ∈ Γ. Also a vertex vσi is a t-neighbor of vσ

′
j in G∗ if and only if vi is a t-neighbor of

vj in G where i, j ∈ {1, 2, · · · , k} and σ, σ′ ∈ Γ. The Γ-switched graph ρΓ(G) of G is the
(n,m)-graph obtained from G∗ by performing a σ-switch on vσi for all i ∈ {1, 2, · · · , k}
and σ ∈ Γ.

This Γ-switch graph helps build a bridge between ⟨e⟩-homomorphism and Γ-homomorphism
of two (n,m)-graphs.

Proposition 3.1. Let G,H be (n,m)-graphs. We have G
Γ−→ H if and only if G

⟨e⟩−→
ρΓ(H).

Proof. For the “only if” part of the proof, suppose f : G
Γ−→ H. Notice that the inclusion

i : H
Γ−→ ρΓ(H) is a Γ-homomorphism. Thus, the composition function i ◦ f is a Γ-

homomorphism of G to ρΓ(H).

For the “if” part of the proof, suppose r : G
⟨e⟩−→ ρΓ(H) be a ⟨e⟩-homomorphism. Let

g1, g2, · · · , gp be the vertices of G, and let h1, h2, · · · , hq be the vertices of H. Also, let
r(gi) = hσij for some σi ∈ Γ. In that case, we define the function φ : V (G) → V (H) as
follows:

φ(gi) = hj.

Now perform a σ−1
i -switch on the vertex gi of G to obtain its Γ-equivalent graph G′. Note

that it is enough to show φ is a ⟨e⟩-homomorphism of G′ to H,
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Let gi be a t-neighbor of gj in G
′. We have to show that φ(gi) = hp is a t-neighbor of

φ(gj) = hq in H. Let σj, σi-switch is applied on gi, gj to obtain G′. This implies that gi is
a σi(σj(t))-neighbor of gj in G. Since r is a ⟨e⟩-homomorphism, hσip is a σi(σj(t))-neighbor

of h
σj
q in ρΓ(H). Hence hp is a σ

−1
i (σ−1

j (σi(σj(t))))-neighbor of hq in H. As Γ is Abelian,
we have

σ−1
i (σ−1

j (σi(σj(t)))) = t.

Hence hp is a t-neighbor of hq in H.

Theorem 3.2. Let G,H be (n,m)-graphs. Then G ≡Γ H if and only if ρΓ(G) ≡⟨e⟩ ρΓ(H).

Proof. For the “only if” part of the proof, suppose f : G
Γ−→ H is a Γ-isomorphism. That

is, there exists some Γ-equivalent G′ of G such that f : G′ ⟨e⟩−→ H is an ⟨e⟩-isomorphism.
Suppose that G has vertices g1, g2, · · · , gp, and G′ is obtained by performing τi-switch on
gi, for some τi ∈ Γ.

For any g
σj
i ∈ V (ρΓ(G)) we define the function ϕ : V (ρΓ(G)) → V (ρΓ(H)) as follows:

ϕ(g
σj
i ) =

(
f(gi)

τ−1
i

)σj
.

Next we prove that ϕ is a ⟨e⟩-isomorphism of ρΓ(G) to ρΓ(H). Note that g
σj
i is

a t-neighbor of gσlk in ρΓ(G) if and only if gi is a σ−1
j (σ−1

l (t))-neighbor of gk in G.

This is if and only if to the following: gi is a τi(τk(σ
−1
j (σ−1

l (t))))-neighbor of gk in
G′. Since f is an ⟨e⟩-isomorphism of G′ to H, the previous statement is if and only
if f(gi) is a τi(τk(σ

−1
j (σ−1

l (t))))-neighbor of f(gk) in H. This is true if and only if

ϕ(g
σj
i ) =

(
f(gi)

τ−1
i

)σj
is a γ(t)-neighbor of ϕ(gσlk ) =

(
f(gk)

τ−1
k

)σl
in ρΓ(H) where

γ(t) = σl(τ
−1
k (σj(τ

−1
i (τi(τk(σ

−1
j (σ−1

l (t)))))))).

However, as Γ is Abelian, γ(t) = t. Thus, ϕ a ⟨e⟩-isomorphism of ρΓ(G) to ρΓ(H).

For the “if” part of the proof, suppose ρΓ(G) ≡⟨e⟩ ρΓ(H) and we have to show G ≡Γ H.
Assume g1, g2, · · · , gp be the vertices of G. A sequence of vertices in ρΓ(G) of the form

(gσ11 , g
σ2

2 , · · · , g
σp
p ) is a representative sequence of G in ρΓ(G), where σi ∈ Γ is any element

for i ∈ {1, 2, · · · , p} (repetition of elements among σis is allowed here).

Given an ⟨e⟩-isomorphism ψ : ρΓ(G)
⟨e⟩−→ ρΓ(H) and a representative sequence S of G

in ρΓ(G), define the set

YS,ψ = {vσ | ψ(vσ) = (ψ(v))σ where v ∈ S and σ ∈ Γ}.

Let YS∗,φ be the set satisfying the property |YS∗,φ| ≥ |YS,ψ| where S varies over all repre-
sentative sequences and ψ varies over all ⟨e⟩-isomorphisms.

We will show that YS∗,φ = V (ρΓ(G)). We will prove by contradiction. Thus, let us
assume the contrary, that is, let YS∗,φ ̸= V (ρΓ(G)). This implies that there exists a vσ, for
some v ∈ S∗ and some σ ∈ Γ such that φ(vσ) ̸= (φ(v))σ. Next let us define the function
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φ̂(x) =


φ(x) if x ̸= g, vσ,

φ(g) if x = vσ,

φ(vσ) if x = g,

where g = φ−1(φ(v)σ) ∈ ρΓ(G).
Next we are going to show that φ̂ is an ⟨e⟩-isomorphism of ρΓ(G) and ρΓ(H). So, we

need to show that x is a t-neighbor of y in ρΓ(G) if and only if φ̂(x) is a t-neighbor of
φ̂(y) in ρΓ(H). Notice that, it is enough to check this for x = g and x = vσ while y varies
over all vertices of ρΓ(G). We will separately handle the exceptional case when x = vσ

and y = g first.

(i) When x = vσ and y = g: Note that φ(v) and φ(v)σ are non-adjacent. Thus, v =
φ−1(φ(v)) and g = φ−1(φ(v)σ) are non-adjacent. Hence x = vσ and y = g are also
non-adjacent. On the other hand, this implies that φ̂(x) = φ(g) and φ̂(y) = φ(vσ)
are non-adjacent.

(ii) When x = vσ and y ̸= g: Note that x is a t-neighbour of y in ρΓ(G) if and only
if φ(x) is a t-neighbor of φ(y) in ρΓ(H), as φ is an ⟨e⟩-isomorphism. Observe that
φ̂(x) = φ(g) = φ(v)σ as g = φ−1(φ(v)σ), and φ̂(y) = φ(y). Since x = vσ, v is a
σ−1(t)-neighbor of y in ρΓ(G), if and only if φ(v) is a σ−1(t)-neighbor of φ(y) in
ρΓ(H), if and only if, φ(v)σ = φ̂(x) is a t-neighbour of φ(y) = φ̂(y). in ρΓ(H).

(iii) When x = g and y ̸= vσ: Note that x is a t-neighbor of y in ρΓ(G) if and only if,
φ(x) = φ(g) = φ(v)σ is a t-neighbor of φ(y) in ρΓ(H), as g = φ−1(φ(v)σ). The
previous statement holds if and only if φ(v) is σ−1(t)-neighbor of φ(y) in ρΓ(H) if
and only if v is is σ−1(t)-neighbor of y in ρΓ(G) if and only if vσ is t-neighbor of y
in ρΓ(G) if and only if φ(vσ) = φ̂(x) is t-neighbor of φ(y) = φ̂(y) in ρΓ(H) .

However, now we have |YS∗,φ| < |YS∗,φ̂|. This is a contradiction to the definition of
YS∗,φ, and hence YS∗,φ = V (ρΓ(G)).

Let v1, v2 ∈ S∗. If φ(v1)
σ = φ(v2) for any σ ∈ Γ, then φ(vσ1 ) = φ(v2). This implies

vσ1 = v2 because φ is a bijection. However, this is not possible as v1, v2 are elements of the
same representative sequence of G in ρΓ(G). Hence, φ(v1)

σ ̸= φ(v2) for any v1, v2 ∈ S∗.
That means, φ(S∗) = R is a representative sequence of H in ρΓ(H). Thus, note that
⟨e⟩-isomorphism restricted to the induced subgraph ρΓ(G)[S

∗] is also an ⟨e⟩-isomorphism
to the induced subgraph ρΓ(H)[R]. That is, ρΓ(G)[S

∗] ≡⟨e⟩ ρΓ(H)[R]. As ⟨e⟩ ⊆ Γ, this
also means ρΓ(G)[S

∗] ≡Γ ρΓ(H)[R].
On the other hand, as S∗ and R are representative sequences of G and H, respectively,

we have ρΓ(G)[S
∗] ≡Γ G and ρΓ(H)[R] ≡Γ H. Thus we are done by composing the Γ-

isomorphisms.

The next result follows from the fundamental theorem of finite abelian groups.

Theorem 3.3. Let Γ1 be a consistent Abelian subgroup of S2n+m. Let Γ2 ⊆ Γ1. If p
2 ∤ |Γ1|

for any prime p, then ρΓ1(G) ≡⟨e⟩ ρΓ1/Γ2(ρΓ2(G)).
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Proof. Since Γ1 is a finite Abelian group, Γ1/Γ2 and Γ2 both are normal subgroups of Γ1,
As, p2 ∤ |Γ1|, we have Γ1/Γ2 × Γ2 ≡ Γ1. Thus along with the fact that Γ2 and Γ1/Γ2 are
normal subgroups, we have Γ2 · Γ1/Γ2 = Γ1. Thus we see that every element σ ∈ Γ1, can
be uniquely written as α.β, where α ∈ Γ1/Γ2, β ∈ Γ2. Now let G be an (n,m)-graph. We
prove, f : ρΓ1(G) → ρΓ1/Γ2(ρΓ2(G) is an isomorphism. Consider,

f : V (ρΓ1(G)) → V (ρΓ1/Γ2(ρΓ2(G)),

f(uσ) = (uα)β.

where α.β = σ.
Suppose, uσi be a t-neighbor vσj in ρΓ1(G) for some i, j if and only if uαi.βi is a t-

neighbor of vαj .βj , where σi = αi.βi and σj = αj.βj. As Γ2 and Γ1/Γ2 are Abelian, every
σ ∈ Γ1, can be uniquely represented as α.β, where α ∈ Γ1/Γ2 and β ∈ Γ2.

A Γ-core of an (n,m)-graph G is a subgraph H of G such that G
Γ−→ H, whereas H

does not admit a Γ-homomorphism to any of its proper subgraphs.

Theorem 3.4. The core of an (n,m)-graph G is unique up to Γ-isomorphism.

Proof. Let H1 and H2 be two Γ-cores of G. We have to show that H1 and H2 are Γ-
isomorphic.

Note that, there exist Γ-homomorphisms f1 : G
Γ−→ H1 and f2 : G

Γ−→ H2 as H1, H2 are

Γ-cores. Moreover, there exists inclusion Γ-homomorphisms i1 : H1
Γ−→ G and i2 : H2

Γ−→ G.

Now consider the composition Γ-homomorphism f2 ◦ i1 : H1
Γ−→ H2. Note that it must

be a surjective vertex mapping. Not only that, for any non-adjacent pair u, v of vertices
in H1, the vertices (f2 ◦ i1)(u) and (f2 ◦ i1)(v) are non-adjacent in H2. The reason is that,
if the above two conditions are not satisfied, then the composition Γ-homomorphism

f2 ◦ i1 ◦ f1 : G
Γ−→ H ′

2 can be considered as a Γ-homomorphism to a proper subgraph of
H2. This will contradict the fact that H2 is a Γ-core. Therefore, f2 ◦ i1 is a bijective
Γ-homomorphism whose inverse is also a Γ-homomorphism. In other words, f2 ◦ i1 is a
Γ-isomorphism.

Due to the above theorem, it is possible to define the Γ-core of G and denote it by
coreΓ(G). Notice that, this is the analogue of the fundamental algebraic concept of core
in the study of graph homomorphism.

4 Categorical products

Taking the set of (n,m)-graphs as objects and their Γ-homomorphisms as morphisms,
one can consider the category of (n,m)-graphs with respect to Γ-homomorphism. In
this section, we study whether products and co-products exist in this category or not.
We would also like to remark that the existence of categorical product and co-product
will not only contribute in establishing the category of (n,m)-graphs with respect to Γ-
homomorphism as a richly structured category, but it will also show that the lattice of
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(n,m)-graphs induced by Γ-homomorphisms is a distributive lattice with the categorical
products and co-products playing the roles of join and meet, respectively. Moreover,
categorical product was useful in proving the density theorem [5] for undirected and
directed graphs. Thus, it is not wrong to hope that it may become useful to prove the
analogue of the density theorem in our context.

Before proceeding further with the results, let us recall what categorical product and
co-product mean in our context. Let G,H be two (n,m)-graphs and let Γ ⊆ S2n+m be an
Abelian group.

The categorical product of G and H with respect to Γ-homomorphism is an (n,m)-

graph P having two projection mappings of the form fg : P
Γ−→ G and fh : P

Γ−→ H sat-
isfying the following universal property: if any (n,m)-graph P ′ admit Γ-homomorphisms

ϕg : P
′ Γ−→ G and ϕh : P ′ Γ−→ H, then there exists a unique Γ-homomorphism φ : P ′ Γ−→ P

such that ϕg = fg ◦ φ and ϕh = fh ◦ φ.
The categorical co-product of G and H with respect to Γ-homomorphism is an (n,m)-

graph C along with the two inclusion mappings of the form ig : G
Γ−→ C and ih :

H
Γ−→ C satisfying the following universal property: if for any (n,m)-graph C ′ there

are Γ-homomorphisms ϕg : G
Γ−→ C ′ and ϕh : H

Γ−→ C ′, then there exists a unique Γ-

homomorphism φ : C
Γ−→ C ′ such that ϕg = φ ◦ ig and ϕh = φ ◦ ih.

Let G,H be two (n,m)-graphs and let Γ ⊆ S2n+m be an Abelian group. Then G×⟨e⟩H
denotes the (n,m)-graph on set of vertices V (G) × V (H) where (u, v) is a t-neighbor of
(u′, v′) in G×⟨e⟩H if and only if u is a t-neighbor of u′ in G and v is a t-neighbor of v′ in
H. Moreover, the (n,m)-graph G ×Γ H is the subgraph of ρΓ(G) ×⟨e⟩ ρΓ(H) induced by
the set of vertices

X = {(uσ, vσ) : (u, v) ∈ V (G)× V (H) and σ ∈ Γ}.
Theorem 4.1. The categorical product of (n,m)-graphs G and H with respect to Γ-
homomorphism exists and is Γ-isomorphic to G×Γ H.

Proof. Let (G×Γ H)′ be Γ-switched graph of G×Γ H, where we apply σ−1 on (uσ, vσ) ∈
V (G ×Γ H). Thus, we define fg(u

σ, vσ) = u and fh(u
σ, vσ) = v as the two projections.

Observe that fg and fh are ⟨e⟩-homomorphisms of (G ×Γ H)′ to G and H, respectively.

If there exists an (n,m)-graph P ′ such that, ϕg : P
′ Γ−→ G and ϕh : P ′ Γ−→ H, then define

ϕ : P ′ Γ−→ G ×Γ H such that ϕ(p) = (ϕg(p), ϕh(p)). From the definition of ϕ, we have
ϕg = fg ◦ ϕ and ϕh = fh ◦ ϕ. Note that this is the unique way we can define ϕ which
satisfies the universal property from the definition of products. Thus, G ×Γ H is indeed
the categorical product of G and H with respect to Γ-homomorphism once we prove its
uniqueness up to Γ-isomorphism.

Suppose P1 with homomorphisms fg, fh and P2 with homomorphisms ϕg, ϕh be two
(n,m)-graphs that satisfy the universal properties of categorical product of G and H, then

there exists φ : P1
Γ−→ P2 and φ′ : P2

Γ−→ P1 with ϕg ◦ φ = fg, ϕh ◦ φ = fh and fg ◦ φ′ = ϕg,

fh ◦ φ′ = ϕh. Now consider the composition, φ′ ◦ φ : P1
Γ−→ P1. As, fg ◦ (φ′ ◦ φ) = fg,

fh ◦ (φ′ ◦φ) = fh, we should have φ′ ◦φ to be the identity mapping on P1. Similarly φ◦φ′

must be the identity mapping on P2. Thus implying, φ′ = φ−1 is an Γ-isomorphism of P2

and P1.
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Corollary 4.2. From the Theorem 3.2 and Theorem 4.1, we have, ρΓ(G ×Γ H) ≡⟨e⟩
ρΓ(G)×⟨e⟩ ρΓ(H).

Let G+H denotes the disjoint union of the (n,m)-graphs G and H.

Theorem 4.3. The categorical co-product of (n,m)-graphs G and H with respect to Γ-
homomorphism exists and is Γ-isomorphic to G+H.

Proof. Consider the inclusion mapping ig : G
⟨e⟩−→ G + H, and ih : H

⟨e⟩−→ G + H.

Suppose there exists an (n,m)-graph C and there are Γ-homomorphisms ϕg : G
Γ−→ C and

ϕh : H
Γ−→ C, then there exists a Γ-homomorphism φ : G+H

Γ−→ C such that

φ(x) =

{
ϕg(x) if x ∈ V (G),

ϕh(x) if x ∈ V (H).

Observe that, ϕg = φ ◦ ig and ϕh = φ ◦ ih. Note that such a φ is unique.
Suppose we have P with Γ-homomorphisms fg, fh and P ′ with Γ-homomorphisms

ϕg, ϕh satisfying the universal property of categorical co-product of G and H, then there

exists Γ-homomorphisms, φ : P
Γ−→ P ′ and φ′ : P ′ Γ−→ P with ϕg = φ ◦ fg, ϕh = φ ◦ fh

and fg = φ′ ◦ ϕg, fh = φ′ ◦ ϕh. Now consider the composition, φ′ ◦ φ : P
Γ−→ P . As,

(φ′ ◦ φ) ◦ fg = fg, (φ
′ ◦ φ) ◦ fh = fh, we should have φ′ ◦ φ to be the identity mapping on

P . Similarly φ ◦φ′ must be the identity mapping on P . Thus implying, φ′ = φ−1 is an Γ-
isomorphism of P ′ and P . Therefore, we have, the categorical co-product of (n,m)-graphs
G and H with respect to Γ-homomorphism is G+H.

Thus both categorical product and co-product exists with respect to Γ-homomorphism.
Furthermore, the usual algebraic identities hold with respect to these operations too.

Theorem 4.4. For any (n,m)-graphs G,H,K we have the following.

(i) G×Γ H ≡Γ H ×Γ G,

(ii) G×Γ (H ×Γ K) ≡Γ (G×Γ H)×Γ K,

(iii) G×Γ (H +K) ≡Γ (G×Γ H) + (G×Γ K).

Proof. (i) In Theorem 4.1, we showed the existence and uniqueness (up to Γ-isomorphism)
of the categorical product of G and H with respect to Γ-homomorphism. However, if one
follows the definition of categorical product in this context, there is no distinction due to
the order in which we consider G and H. Therefore, the categorical product of G and H
will be the same as the categorical product of H and G. As these two categorical products
are Γ-isomorphic to G×Γ H and H ×Γ G due to Theorem 4.1, respectively, we are done.

(ii) Observe that when Γ = ⟨e⟩. the function

ϕ(g, (h, k)) = ((g, h), k)

is a ⟨e⟩-isomorphism of G×Γ H to H ×Γ G where g ∈ G, h ∈ H, and k ∈ K.
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Next we will prove it for general Γ. Notice that by Theorem 4.1, we have

ρΓ(G×Γ (H ×Γ K)) = ρΓ(G)×⟨e⟩ ρΓ(H ×Γ K) = ρΓ(G)×⟨e⟩ (ρΓ(H)×⟨e⟩ ρΓ(K)) (1)

and

ρΓ((G×Γ H)×Γ K) = ρΓ(G×Γ H)×⟨e⟩ ρΓ(K) = (ρΓ(G)×⟨e⟩ ρΓ(H))×⟨e⟩ ρΓ(K). (2)

Notice that, as we have already proved that our inequality holds for Γ = ⟨e⟩, we know
that

ρΓ(G)×⟨e⟩ (ρΓ(H)×⟨e⟩ ρΓ(K)) ≡⟨e⟩ (ρΓ(G)×⟨e⟩ ρΓ(H))×⟨e⟩ ρΓ(K).

Therefore by equations (3) and (4) we have

ρΓ(G×Γ (H ×Γ K)) ≡⟨e⟩ ρΓ((G×Γ H)×Γ K).

By Theorem 3.2 we have

G×Γ (H ×Γ K) ≡Γ (G×Γ H)×Γ K.

This concludes the proof.

(iii) When Γ = ⟨e⟩ consider the the function

ϕ(g, x) = (g, x)

where g ∈ G and if x ∈ (H+K). However, here if x ∈ H, then the image (g, x) ∈ G×ΓH
and if x ∈ K, then the image (g, x) ∈ G ×Γ K Observe that ϕ is a ⟨e⟩-isomorphism of
G×Γ (H +K) to (G×Γ H) + (G×Γ K).

Next we will prove it for general Γ. Notice that by Theorem 4.1, we have

ρΓ(G×Γ (H +K)) = ρΓ(G)×⟨e⟩ ρΓ(H +K) = ρΓ(G)×⟨e⟩ (ρΓ(H) + ρΓ(K)) (3)

and

ρΓ((G×Γ H) + (G×Γ K)) = ρΓ(G×Γ H) + ρΓ(G×Γ K)

= (ρΓ(G)×⟨e⟩ ρΓ(H)) + (ρΓ(G)×⟨e⟩ ρΓ(K)).
(4)

Notice that, as we have already proved that our inequality holds for Γ = ⟨e⟩, we know
that

ρΓ(G)×⟨e⟩ (ρΓ(H) + ρΓ(K)) ≡⟨e⟩ (ρΓ(G)×⟨e⟩ ρΓ(H)) + (ρΓ(G)×⟨e⟩ ρΓ(K)).

Therefore by equations (3) and (4) we have

ρΓ(G×Γ (H +K)) ≡⟨e⟩ ρΓ((G×Γ H) + (G×Γ K)).

By Theorem 3.2 we have

G×Γ (H +K) ≡Γ (G×Γ H) + (G×Γ K).

This concludes the proof.
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5 Chromatic number

We know that the ordinary chromatic number of a simple graph G can be expressed as
the minimum |V (H)| such that G admits a homomorphism to H. The analogue of this
definition is a popular way for defining chromatic number of other types of graphs, namely,
oriented graphs, k-edge-colored graphs, (n,m)-graphs, signed graphs, push graphs, etc.
Here also, we can follow the same.

The Γ-chromatic number of an (n,m)-graph is given by

χΓ:n,m(G) = min{|V (H)| : G Γ−→ H}.

Moreover, for a family F of (n,m)-graphs, the Γ-chromatic number is given by

χΓ:n,m(F) = max{χΓ:n,m(G) : G ∈ F}.

Let Γ ⊆ S2n+m be an Abelian group acting on the set An,m. For x ∈ An,m, we call the
set, Orbx = {σ(x) : σ ∈ Γ} as orbit of x. Notice that, these orbits form a partition on
the set An,m as the relation, x ∼ y whenever x = σ(y) for some σ ∈ Γ, is an equivalence
relation. We present an important observation.

Proposition 5.1. Let Γ ⊆ S2n+m be a consistent group, G be a (n,m)-graph and G′ be
a Γ-equivalent graph of G. If a vertex u is a t-neighbor of v in G, then u must be a σ(t)
neighbor of v in G′ for some σ ∈ Γ.

Proof. As Γ is a consistent group, there exists some σi ∈ Γ such that σi(α) = −α for
α ∈ {1, 2, 3, · · ·n}. Suppose u is a t-neighbor of v in G, and suppose σi is applied on u
and σj is applied on v to obtain G′.

Case 1 : If σi(t), σj(σi(t)) ∈ {n + 1, n + 2, · · · , n +m}, then v is a σj(σi(t)) = σk(t)-
neighbor of u, where σk = σj · σi. Also u is a σj(σi(t)) = σk(t)-neighbor of v in G′.
Suppose, if σj(σi(t)) ∈ {1, 2, · · ·n}, in this case v is σj(σi(t))-neighbor of u, whereas u is
−σj(σi(t))-neighbor of v. That is, u is −σk(t)-neighbor of v. Since Γ is consistent, there
exists σl ∈ Γ such that u is σl(t)-neighbor of v.

Case 2 : If σi(t) ∈ {1, 2, · · · , n}, then u is a σi(t)-neighbor of v, and, v is a −σi(t)-
neighbor of u. As Γ is consistent, there exists σl ∈ Γ such that σl(t) = −σi(t). Thus, v
is a σl(t)-neighbor of u. Now σj is applied on v. If σj(σl(t)) ∈ {n + 1, n + 2, · · ·n +m},
then, v is σj(σl(t))-neighbor of u, and u also is σj(σl(t)-neighbor of v. Let, σr = σj · σl.
Then, u is a σr(t)-neighbor of v. If σj(σl(t)) ∈ {1, 2, · · · , n}, then v is σj(σl(t)) = σk(t)-
neighbor of u for some k, whereas u is −σj(σl(t))-neighbor of v. Then we have, u is
−σj(σl(t)) = −σk(t)-neighbor of v, as Γ is consistent, −σk(t) = σr(t) for some r.

Next we focus on studying the Γ-chromatic number of (n,m)-forests.

Theorem 5.2. Let F be the family of (n,m)-forests and let t be the number of orbits of
An,m with respect to the action of Γ. Then,

χΓ:n,m(F) ≤

{
t+ 2 if t is even,

t+ 1 if t is odd.

Moreover, equality holds if Γ is consistent.

10



Proof. We will start by proving the upper bound. First assume that t is odd. In this
case consider the complete graph Kt+1. We will construct a complete (n,m)-graph having
Kt+1 as its underlying graph. As (t+ 1) is even, we know that Kt+1 can be decomposed
into t−1

2
edge-disjoint Hamiltonian cycles and a perfect matching.

Let {α1, α2, · · ·αt} be the representatives of the t orbits. If v0v1 · · · vtv0 is the ith

Hamiltonian cycle from the decomposition, then assign adjacencies to the edges of it in
such a way that vj is a α2j−1-neighbor of vj−1 and vj+1 is a α2j-neighbor of vj, for j ∈
{0, 1, · · · , t−1

2
} where the + operation of the indices is considered modulo (t+1). Moreover,

let u0w0, u1w1, · · · , u t−1
2
w t

2
be the edges of the perfect matching from the decomposition

mentioned above. Assign adjacenies to these edges in such a way that uj is a αt-neighbor
of wj for all j ∈ {0, 1, · · · , t−1

2
}. With a little abuse of notation, we denote the so obtained

(n,m)-graph by Kt+1 itself.

Notice that, each vertex of Kt+1 have a αj-neighbor for all i ∈ {1, 2, · · · , t}. We claim
that every (n,m)-forest admit a Γ-homomorphism to Kt+1. If not, then there exists a
minimal (with respect to number of vertices) counter-example F that does not admit
Γ-homomorphism to Kt+1. Let u be a leaf, having v as its neighbor, of F , then F \ {u}
is no longer a minimal counter-example, thus it admits a Γ-homomorphism f to Kt+1.
That means, there exists a Γ-equivalence (n,m)-graph F ′ \ {u} such that f is a ⟨e⟩-
homomorphism of it to Kt+1. Also assume that, F ′ is such a Γ-equivalent (n,m)-graph
of F , that v is a αi-neighbor of u for some i ∈ {1, 2, · · · , t}. This is possible as one can
switch the vertex v to make the adjacency of u with v match the corresponding orbit’s
representative. Now, we extend f to a ⟨e⟩-homomorphism of F ′ to Kt+1 by mapping
v to the αi-neighbor f(u) in Kt+1. That means, there exists a Γ-homomorphism of F
to Kt+1. This contradicts the minimality of F . Hence every (n,m)-forest admits a Γ-
homomorphism to Kn,m.

Secondly, assume that t is odd. Note that, if there were t + 1 orbits instead, then by
what we have proved above, it was possible to show that all (n,m)-forests will admit a Γ-
homomorphism to an (n,m)-graph having Kt+2 as underlying graph. Therefore, assuming
a dummy orbit we are done with this case too.

Next we will prove the tightness of the upper bound when Γ is consistent. Let
{α1, α2, · · ·αt} be the representatives of the t orbits. For odd values of t, consider the star
(n,m)-graph S on t + 1 vertices: the central vertex v having t neighbors v1, v2, · · · , vt.
Let vi be a αi-neighbor of v for all i ∈ {1, 2, · · · , t}. As, no matter how we switch the
vertices of S, the vertex v will have t distinctly adjacent neighbors. Therefore we have
χΓ:n,m(S) ≥ t+ 1, and thus χΓ:n,m(F) = t+ 1 when t is odd and Γ is consistent.

For even values of t, consider a rooted tree T of height two in which every vertex,
other than the leaves, has exactly one αi-neighbor for i ∈ {1, 2, · · · , t}. Suppose T admits
a Γ-homomorphism f to an (n,m)-graph H. Let r be the root of T . If H has (t + 1)
vertices, then the images of the vertices from N [r] under f will be a spanning subgraph
in H. Furthermore, notice that each vertex of N [r] has at least one βi-neighbor, where
βi belongs to the ith orbit. Thus their images should also have the same property, that
is each of them must have at least one βi-neighbor, where βi belongs to the ith orbit.
However, as H has only (t+1) vertices, each of its vertices are forced to have exactly one
βi-neighbor, where βi belongs to the ith orbit. Now if we restrict ourselves to only the
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neighbors whose type is from a particular orbit, that must give us a perfect matching,
which is impossible as (t + 1) is odd. Therefore, H must have at least (t + 2) vertices
which implies the lower bound.

6 Concluding remarks

In this article, we introduced a generalized switch operation on (n,m)-graphs and studied
its basic algebraic properties. This topic will generate plenty of natural open questions,
especially, in an effort of extending the known results in the domain of graph homomor-
phisms. As a remark, using the notion of generalized switch (implicitly), it was possible
to improve the upper bound of the ⟨e⟩-chromatic number of (n,m)-partial 2-trees where
2n+m = 3 [9].
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