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Abstract. The radio k-chromatic number rck(G) of a graph G is the
minimum integer λ such that there exists a function ϕ : V (G) → {0, 1, · · · ,
λ} satisfying |ϕ(u) − ϕ(v)| ≥ k + 1 − d(u, v), where d(u, v) denotes the
distance between u and v. To date, several upper and lower bounds of
rck(·) is established for different graph families. One of the most notable
works in this domain is due to Liu and Zhu [SIAM Journal on Discrete
Mathematics 2005] whose main results were computing the exact values
of rck(·) for paths and cycles for the specific case when k is equal to the
diameter.
In this article, we find the exact values of rck(G) for powers of paths
where the diameter of the graph is strictly less than k. Our proof readily
provides a linear time algorithm for providing such a labeling. Further-
more, our proof technique is a potential tool for solving the same problem
for other classes of graphs having “small” diameter.

Keywords: radio coloring · radio k-chromatic number · Channel As-
signment Problem · power of paths.

1 Introduction and main results

The theory of radio coloring and its variations are popular and well-known
mathematical models of the Channel Assignment Problem (CAP) in wireless
networks [1, 2]. The connection between the real-life problem and the theoretical
model has been explored in different bodies of works. In this article, we focus
on the theoretical aspects of a particular variant, namely, the radio k-coloring.
All the graphs considered in this article are undirected simple graphs and we
refer to the book “Introduction to graph theory” by West [14] for all standard
notations and terminologies used.

A λ-radio k-coloring of a graph G is a function ϕ : V (G) → {0, 1, · · · , λ}
satisfying |ϕ(u)− ϕ(v)| ≥ k + 1− d(u, v). For every u ∈ V (G), the value ϕ(u) is
generally referred to as the color of u under ϕ. Usually, we pick λ in such a way
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that it has a preimage under ϕ, and then, we call λ to be the span of ϕ, denoting
it by span(ϕ). The radio k-chromatic number4 rck(G) is the minimum span(ϕ),
where ϕ varies over all radio k-colorings of G.

In particular, the radio 2-chromatic number is the most well-studied restric-
tion of the parameter (apart from the radio 1-chromatic number, which is equiv-
alent to studying the chromatic number of graphs). There is a famous conjecture
by Griggs and Yeh [6] that claims rc2(G) ≤ ∆2 where ∆ is the maximum degree
of G. The conjecture have been resolved for all ∆ ≥ 1069 by Havet, Reed and
Sereni [7].

As one may expect, finding the exact values of rck(G) for a general graph is
an NP-complete problem [6]. Therefore, finding the exact value of rck(G) for a
given graph (usually belonging to a particular graph family) offers a huge num-
ber of interesting problems. Unfortunately, due to a lack of general techniques
for solving these problems, not many exact values are known till date. One of the
best contributions in this front remains the work of Liu and Zhu [12] who com-
puted the exact value of rck(G) where G is a path or a cycle and k = diam(G).

As our work focuses on finding radio k-chromatic number of powers of paths,
let us briefly recall the relevant related works. For a detailed overview of the
topic, we encourage the reader to consult Chapter 7.5 of the dynamic survey on
this topic maintained in the Electronic Journal of Combinatorics by Gallian [5]
and the survey by Panigrahi [13]. For small paths Pn, that is, with diam(Pn) < k,
Kchikech et al. [8] had established an exact formula for rck(Pn); whereas, recall
that, for paths of diameter equal to k ≥ 2, Liu and Zhu [12] gave an exact formula
for the radio number rck(Pk). Moreover, a number of studies on the parameter
rck(Pn) depending on how k is related to diam(Pn), or n alternatively, have been
done by various authors [8–10, 3]. So far as works on powers of paths is concerned,
the only notable work we know is an exact formula for the radio number rn(P 2

n)
of the square of a path Pn by Liu and Xie [11]. Hence the natural question to
ask is whether the results for the paths can be extended to paths of a general
power m, where 1 ≤ m ≤ n.

Progressing along the same line, in this article we concentrate on powers
of paths having “small diameters”, that is, diam(Pm

n ) < k and compute the
exact value of rck(P

m
n ), where Pm

n denotes the m-th power graph of a path Pn

on (n + 1) vertices. In other words, the graph Pm
n is obtained by adding edges

between the vertices of Pn that are at most m distance apart. Notice that, the
so-obtained graph is, in particular, an interval graph. Let us now state our main
theorem.

Theorem 1. For all k > diam(Pm
n ), we have

4 In the case that diam(G) = k, k+1 and k+2, the radio k-chromatic number is alter-
natively known as the radio number denoted by rn(G), the radio antipodal number
denoted by ac(G) and the nearly antipodal number denoted by ac′(G), respectively.
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rck(P
m
n ) =


nk − n2−m2

2m if ⌈ n
m⌉ is odd and m|n,

nk − n2−s2

2m + 1 if ⌈ n
m⌉ is odd and m ∤ n,

nk − n2

2m + 1 if ⌈ n
m⌉ is even and m|n,

nk − n2−(m−s)2

2m + 1 if ⌈ n
m⌉ is even and m ∤ n,

where s ≡ n (mod m).

In this article, we develop a robust graph theoretic tool for the proof. Even
though the tool is specifically used to prove our result, it can be adapted to
prove bounds for other classes of graphs. Thus, we would like to remark that,
the main contribution of this work is not only in proving an important result
that captures a significant number of problems with a unified proof, but also
in devising a proof technique that has the potential of becoming a standard
technique to attack similar problems. We will prove the theorem in the next
section.

Moreover, our proof of the upper bound is by giving a prescribed radio k-
coloring of the concerned graph, and then proving its validity, while the lower
bound proof establishes its optimality. Therefore, as a corollary to Theorem 1,
we can say that our proof provides a linear time algorithm radio k-color powers
of paths, optimally.

Theorem 2. For all k > diam(Pm
n ), one can provide an optimal radio k-

coloring of the graph Pm
n in O(n) time.

We prove Theorem 1 in the next section.

2 Proofs of Theorems 1 and 2

This section is entirely dedicated to the proofs of Theorems 1 and 2. The proof
uses specific notations and terminologies developed for making it easier for the
reader to follow. The proof is contained in several observations and lemmas and
uses a modified and improved version of the DGNS formula [4] applicable for
graphs having small diameters, that is, less than or equal to k.

As seen from the theorem statement, the graph Pm
n that we work on is the

mth power of the path on (n+1) vertices. One crucial aspect of this proof is the
naming of the vertices of Pm

n . In fact, for convenience, we shall assign two names
to each of the vertices of the graph and use them as required depending on the
context. Such a naming convention will depend on the parity of the diameter of
Pn
m.

Observation 1. The diameter of the graph Pm
n is diam(Pm

n ) = ⌈ n
m⌉.

For the rest of this section, we shall fix the notation that q = ⌊diam(Pm
n )

2 ⌋.
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2.1 The naming conventions

We are now ready to present the first naming convention for the vertices of Pm
n .

For convenience, let us suppose that the vertices of Pm
n are placed (embedded) on

the X-axis having co-ordinates (i, 0) where i ∈ {0, 1, · · · , n} and two (distinct)
vertices are adjacent if and only if their Euclidean distance is at most m.

We start by selecting the layer L0 consisting of the vertex, named c0, say,
positioned at (qm, 0) for even values of diam(Pm

n ). On the other hand, for odd
values of diam(Pm

n ), the layer L0 consists of the vertices c0, c1, · · · , cm, say,
positioned at (qm, 0), (qm+ 1, 0), · · · , (qm+m, 0), respectively, and inducing a
maximal clique of size (m+1). The vertices of L0 are called the central vertices,
and those positioned to the left and the right side of the central vertices are
naturally called the left vertices and the right vertices, respectively.

After this, we define the layer Li as the set of vertices that are at a distance
i from L0. Observe that the layer Li is non-empty for all i ∈ {0, 1, · · · , q}.
Moreover, notice that, for all i ∈ {1, 2, · · · , q}, Li consists of both left and right
vertices. In particular, for i ≥ 1, the left vertices of Li are named li1, li2, · · · , lim,
sorted according to the increasing order of their Euclidean distances from L0.
Similarly, for i ∈ {1, 2, · · · , q−1}, the right vertices of Li are named ri1, ri2, · · · ,
rim, sorted according to the increasing order of their Euclidean distance from L0.
However, the right vertices of Lq are rq1, rq2, · · · , rqs, where s = (n+1)− (2q−
1)m− |L0| (observe that this s is the same as the s mentioned in the statement
of Theorem 1), again sorted according to the increasing order of their Euclidean
distances from L0. That is, if m ∤ n, then there are s = (n+1)− (2q−1)m−|L0|
right vertices in Lq. Besides, every layer Li, for i ∈ {1, 2, · · · , q− 1}, has exactly
m left vertices and m right vertices. This completes our first naming convention.

Now, we move to the second naming convention. This depends on yet another
observation.

Observation 2. Let ϕ be a radio k-coloring of Pm
n . Then ϕ(x) ̸= ϕ(y) for all

distinct x, y ∈ V (Pm
n ).

Proof. As diam(Pm
n ) < k, the distance between any two vertices of Pm

n is at
most k − 1. Thus, their colors must differ by a value of at least 1.

Let ϕ be a radio k-coloring of Pm
n . Thus, due to Observation 2, it is possible to

sort the vertices of Pm
n according to the increasing order of their colors. That is,

our second naming convention which names the vertices of Pm
n as v0, v1, · · · , vn

satisfying ϕ(v0) < ϕ(v1) < · · · < ϕ(vn). Clearly, the second naming convention
depends only on the coloring ϕ, which, for the rest of this section, will play the
role of any arbitrary radio k-coloring of Pm

n .

2.2 The lower bound

Next, we shall proceed to establish the lower bound of the Theorem 1 by showing
it to be a lower bound of span(ϕ). To do so, however, we need to introduce yet
another notation. Let f : V (Pm

n ) → {0, 1, · · · , q} be the function which indicates
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the layer of a vertex, that is, f(x) = i if x ∈ Li. With this notation, we initiate
the lower bound proof with the following result.

Lemma 1. For any i ∈ {0, 1, · · · , n− 1}, we have

ϕ(vi+1)− ϕ(vi) ≥

{
k − f(vi)− f(vi+1) + 1 if diam(Pm

n ) is even,

k − f(vi)− f(vi+1) if diam(Pm
n ) is odd.

Proof. If diam(Pm
n ) is even, then L0 consists of the single vertex c0. Observe

that, as vi is in Lf(vi), it is at a distance f(vi) from c0. Similarly, vi+1 is at a
distance f(vi+1) from c0. Hence, by the triangle inequality, we have

d(vi, vi+1) ≤ d(vi, c0) + d(c0, vi+1) = f(vi) + f(vi+1).

Therefore, by the definition of radio k-coloring,

ϕ(vi+1)− ϕ(vi) ≥ k − f(vi)− f(vi+1) + 1.

If diam(Pm
n ) is odd, then L0 is a clique. Thus, by the definition of layers and

the function f , there exist vertices cj and cj′ in L0 satisfying d(vi, cj) = f(vi)
and d(vi+1, cj′) = f(vi+1). Hence, by triangle inequality again, we have

d(vi, vi+1) ≤ d(vi, cj) + d(cj , cj′) + d(cj′ , vi+1) = f(vi) + 1 + f(vi+1).

Therefore, by the definition of radio k-coloring,

ϕ(vi+1)− ϕ(vi) ≥ k − f(vi)− f(vi+1).

Hence we are done.

Notice that it is not possible to improve the lower bound of the inequality
presented in Lemma 1. Motivated by this fact, whenever we have

ϕ(vi+1)− ϕ(vi) =

{
k − f(vi)− f(vi+1) + 1 if diam(Pm

n ) is even,

k − f(vi)− f(vi+1) if diam(Pm
n ) is odd.

for some i ∈ {0, 1, · · · , n− 1}, we say that the pair (vi, vi+1) is optimally colored
by ϕ. Moreover, we can naturally extend this definition to a sequence of vertices
of the type (vi, vi+1, · · · , vi+i′) by calling it an optimally colored sequence by ϕ if
(vi+j , vi+j+1) is optimally colored by ϕ for all j ∈ {0, 1, · · · , i′−1}. Furthermore,
a loosely colored sequence (vi, vi+1, vi+2, · · · , vi+i′) is a sequence that does not
contain any optimally colored sequence as a subsequence.

An important thing to notice is that the sequence of vertices (v0, v1, · · · , vn)
can be written as a concatenation of maximal optimally colored sequences and
loosely colored sequences. That is, it is possible to write

(v0, v1, · · · , vn) = Y0X1Y1X2 · · ·XtYt
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where Yis are loosely colored sequences and Xjs are maximal optimally colored
sequences. Here, we allow the Yis to be empty sequences as well. In fact, a Yi is
empty if and only if there exist two consecutive vertices vs′ and vs′+1 of Pm

n in
the second naming convention such that (vs′ , vs′+1) is loosely colored and that
Xi = (vs, vs+1, · · · , vs′) and Xi+1 = (vs′+1, vs′+2, · · · , vs′′) for some s ≤ s′ < s′′.
By convention, empty sequences are always loosely colored and a sequence having
a singleton vertex is always optimally colored. From now onward, whenever
we mention a radio k-coloring ϕ of Pm

n , we shall also suppose an associated
concatenated sequence using the same notation as mentioned above.

Let us now prove a result which plays an instrumental role in the proof of
the lower bound.

Lemma 2. Let ϕ be a radio-k coloring of Pm
n such that

(v0, v1, · · · , vn) = Y0X1Y1X2 · · ·XtYt.

Then, for even values of diam(Pm
n ), we have

span(ϕ) ≥

[
n(k + 1)− 2

q∑
i=1

i|Li|

]
+

[
f(v0) + f(vn) +

t∑
i=0

|Yi|+ t− 1

]

and, for odd values of diam(Pm
n ), we have

span(ϕ) ≥

[
nk − 2

q∑
i=1

i|Li|

]
+

[
f(v0) + f(vn) +

t∑
i=0

|Yi|+ t− 1

]
,

where |Yi| denotes the length of the sequence Yi.

Proof. We know that span(ϕ) = ϕ(vn) − ϕ(v0). However, we can expand this
difference as

span(ϕ) = ϕ(vn)− ϕ(v0)

= (ϕ(vn)− ϕ(vn−1)) + (ϕ(vn−1)− ϕ(vn−2)) + · · ·+ (ϕ(v1)− ϕ(v0))

=

n−1∑
i=0

[ϕ(vi+1)− ϕ(vi)].

Now, let ϵ be an indicator function on the diameter of Pm
n . That is, let ϵ = 1

for even values of diam(Pm
n ) and ϵ = 0 for odd values of diam(Pm

n ). Then, notice
that, by Lemma 1, we have

ϕ(vi+1)− ϕ(vi) ≥ k − f(vi)− f(vi+1) + ϵ

and, if (vi, vi+1) is loosely colored, then

ϕ(vi+1)− ϕ(vi) > k − f(vi)− f(vi+1) + ϵ.
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Therefore, if

S = {vi : (vi, vi+1) is loosely colored, where 0 ≤ i ≤ n− 1},

then we have,

span(ϕ) =

n−1∑
i=0

[ϕ(vi+1)− ϕ(vi)]

≥ |S|+
n−1∑
i=0

[k − f(vi)− f(vi+1) + ϵ]

= |S|+ n(k + ϵ)−
n−1∑
i=0

f(vi)−
n−1∑
i=0

f(vi+1)

= |S|+ n(k + ϵ) + f(v0) + f(vn)− 2

n∑
i=0

f(vi)

= |S|+ n(k + ϵ) + f(v0) + f(vn)− 2

q∑
i=0

i|Li|.

Notice that, to count |S| it is enough to count the lengths of the loosely
colored sequences, i.e. the |Yi|s, and the number of transitions between the loosely
colored and the optimally colored sequences, i.e. between a Yi and an Xi. To be
precise, we can write

|S| = |Y0|+ (|Y1|+ 1) + (|Y2|+ 1) + · · ·+ (|Yt−1|+ 1) + |Yt|

= (t− 1) +

t∑
i=0

|Yt|.

Combining the above two equations therefore, we obtain the result.

As we shall calculate the two additive components of Lemma 2 separately,
we introduce short-hand notations for them for the convenience of reference. So,
let

α1 =

{
n(k + 1)− 2

∑q
i=1 i|Li| if diam(Pm

n ) is even,

nk − 2
∑q

i=1 i|Li| if diam(Pm
n ) is odd,

and

α2(ϕ) = f(v0) + f(vn) +

t∑
i=0

|Yi|+ t− 1.

Observe that α1 and α2 are functions of a number of variables and factors such
as, n,m, k, ϕ, etc. However, to avoid clumsy and lengthy formulations, we have
avoided writing α1 and α2 as multivariate functions, as their definitions are not
ambiguous in the current context. Furthermore, as k and Pm

n are assumed to be
fixed in the current context and, as α1 does not depend on ϕ (follows from its
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definition), it is treated and expressed as a constant as a whole. On the other
hand, α2 is expressed as a function of ϕ.

Now we shall establish lower bounds for α1 and α2(ϕ) separately to prove
the lower bound of Theorem 1. Let us start with α1 first.

Lemma 3. We have

α1 =

{
nk − n2+m2−s2

2m if diam(Pm
n ) is even,

nk − n2−s2

2m if diam(Pm
n ) is odd,

where s = (n+ 1)− (2q − 1)m− |L0|.

Proof. Notice that |Li| = 2m for all i ∈ {1, 2, · · · , q − 1} and |Lq| = m + s.
So, simply replacing these values in the definition of α1 and using the relation
s = n − (2q − 1 + ϵ)m, where ϵ = 0 for even values of diam(Pm

n ) and ϵ = 1 for
odd values of diam(Pm

n ), gives us the result.

Next, we focus on α2(ϕ). We shall handle the cases with odd diam(Pm
n ) first.

Lemma 4. We have

α2(ϕ) ≥

{
0 if diam(Pm

n ) is odd and m|n,
1 if diam(Pm

n ) is odd and m ∤ n.

Proof. First of all, notice that there is nothing to prove when diam(Pm
n ) is odd

andm|n as α2(ϕ) is always non-negative by definition. However, when diam(Pm
n )

is odd andm ∤ n, it is enough to show that α2(ϕ) ̸= 0. Suppose the contrary, that
is, α2(ϕ) = 0. Then, we must have both f(v0) = f(vn) = 0 and (v0, v1, · · · , vn) =
Y0X1Y1 having Y0 = Y1 = ∅. That is, both v0 and vn must be from L0 and the
whole sequence (v0, v1, · · · , vn) must be an optimally colored sequence.

Observe that if li1, for any i ∈ {1, 2, · · · , q}, is an element of an optimally
colored pair, then the other element must be either cm or rjm for some j ∈
{1, 2, · · · , q − 1}. This follows from the distance constraints and the definition
of an optimally colored pair of vertices. On the other hand, a pair of vertices
in which one is cm and the other is a right vertex is not an optimally colored
pair of vertices. Moreover, any pair of left vertices (lia, li′a′) or any pair of right
vertices (rjb, rj′b′) are also loosely colored each.

Thus, X1 must contain a contiguous subsequence of the form (a1, b1, a2, b2,
· · · , aq, bq) where ais (resp., bjs) are from {l11, l21, · · · , lq1} and bjs (resp., ais)
are from {cm, r1m, r2m, · · · , r(q−1)m}.

If a1 ∈ {l11, l21, · · · , lq1}, then a1 ̸= v0, as f(v0) = 0 ̸= f(a1). Thus a1 = vi
for some i ≥ 1. This is not possible as vi−1 cannot be from the set {cm, r1m, r2m,
· · · , r(q−1)m} and therefore, the pair (vi−1, vi) is not optimally colored, a con-
tradiction. Hence, α2(ϕ) ̸= 0.

Similarly, we can arrive at a contradiction if bq ∈ {l11, l21, · · · , lq1} and so,
α2(ϕ) ̸= 0 in this case as well. Hence, we are done.
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Next, we consider the cases with even diam(Pm
n ). Before stating with it

though, we are going to introduce some terminologies to be used during the
proofs. So, let Xi be an optimally colored sequence. As Xi cannot have two
consecutive left (resp., right) vertices as elements, the number of left vertices can
be at most one more than the number of right vertices and the central vertex,
the latter two combined together. Based on this observation, if the number of
left vertices is more, equal, or less than the number of right vertices and the
central vertex combined in Xi, then Xi is called a leftist, balanced, or rightist
sequence, respectively.

Lemma 5. We have

α2(ϕ) ≥

{
1 if diam(Pm

n ) is even and m|n,
m− s+ 1 if diam(Pm

n ) is even and m ∤ n,

where s ≡ n (mod m).

Proof. For even values of diam(Pm
n ), L0 consists of only the vertex c0. Therefore,

at most one of v0 and vn can be equal to c0 implying f(v0) + f(vn) ≥ 1. This
proves the case when m|n. So, let us now focus on the case when m ∤ n.

We know that there are exactly (q − 1)m + s right vertices and one central
vertex c0. Suppose that at most (q− 1)m+ s vertices among the set of right and
central vertices are part of optimally colored sequences of (v0, v1, · · · , vn). Thus,
the total number of vertices across the t optimally colored sequences will be

t∑
i=1

|Xi| ≤ 2(q − 1)m+ 2s+ t.

That leaves us with

t∑
i=0

|Yi| ≥ [(2q − 1)m+ s+ 1]− [2(q − 1)m+ 2s+ t] = m− s+ 1− t.

Recall that f(v0) + f(vn) ≥ 1. Hence,

α2(ϕ) = f(v0) + f(vn) +

t∑
i=0

|Yi|+ t− 1 ≥ m− s+ 1.

Therefore, we are left with the case when all (q− 1)m+ s+ 1 right and cen-
tral vertices are part of optimally colored sequences of (v0, v1, · · · , vn). Suppose
that the number of leftist, balanced, and rightist sequences are t1, t2, and t3,
respectively, where t1 + t2 + t3 = t. In this case

t∑
i=1

|Xi| ≤ 2(q − 1)m+ 2s+ 2 + t1 − t3.
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That leaves us with

t∑
i=0

|Yi| ≥ [(2q−1)m+s+1]−[2(q−1)m+2s+2+t1−t3] = (m−s−1)−(t1−t3).

Hence,

α2(ϕ) ≥ f(v0)+f(vn)+

t∑
i=0

|Yi|+t−1 ≥ (m−s−2)+[f(v0)+f(vn)+t−t1+t3].

Thus, it is enough to show that

[f(v0) + f(vn) + t− t1 + t3] ≥ 3. (1)

As f(v0) + f(vn) ≥ 1, the equation (1) will be satisfied if there is one rightist
sequence, or two balanced sequences. Furthermore, if f(v0) + f(vn) ≥ 2, then
equation (1) will be satisfied if there is one rightist or balanced sequence.

Notice that, if ri1, for any i ∈ {1, 2, · · · , q}, is an element of an optimally
colored pair, then the other element must be either c0 or ljm for some j ∈
{1, 2, · · · , q}. We know that all right vertices, in particular, r11, r21, · · · , rq1, are
part of some optimally colored sequences. Observe that, if they are distributed
over two or more optimally colored sequences, then due to the above property,
either one of those sequences will be rightist, or two of the sequences will be
balanced.

Moreover, if they are part of one optimally colored sequence Xi, then that
sequence cannot be leftist. Furthermore, if the first or the last vertex of Xi is
c0, then Xi is rightist. Thus, in any case, equation (1) is satisfied. Hence we are
done.

Combining Lemmas 2, 3, 5 and 4, therefore, we have the following lower
bound for the parameter rck(P

m
n ).

Lemma 6. For all k ≥ diam(Pm
n ) we have

rck(P
m
n ) ≥


nk − n2−m2

2m if ⌈ n
m⌉ is odd and m|n,

nk − n2−s2

2m + 1 if ⌈ n
m⌉ is odd and m ∤ n,

nk − n2

2m + 1 if ⌈ n
m⌉ is even and m|n,

nk − n2−(m−s)2

2m + 1 if ⌈ n
m⌉ is even and m ∤ n,

where s ≡ n (mod m).

2.3 The upper bound

Now let us prove the upper bound. We shall provide a radio k-coloring ψ of Pm
n

and show that its span is the same as the value of rck(P
m
n ) stated in Theorem 1.

To define ψ, we shall use both the naming conventions. That is, we shall express
the ordering (v0, v1, · · · , vn) of the vertices of Pm

n with respect to ψ in terms of
the first naming convention.

Let us define a few ordering for the right (and similarly for the left) vertices:
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(1) rij ≺1 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)j−1i < (−1)j
′−1i′;

(2) rij ≺2 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)m−ji < (−1)m−j′i′;

(3) rij ≺3 ri′j′ if either (i) j < j′ or (ii) j = j′ and i > i′; and

(4) rij ≺4 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)ji < (−1)j
′
i′.

Observe that, the orderings are based on comparing the second co-ordinate of
the indices of the right (resp., left) vertices, and if they happen to be equal, then
comparing the first co-ordinate of the indices with conditions on their parities.
Moreover, all the above four orderings defines total orders on the set of all
right (resp., left) vertices. Thus, there is a unique increasing (resp., decreasing)
sequence of right (or the left) vertices with respect to ≺1, ≺2, ≺3, and ≺4. Based
on these orderings, we are going to construct a sequence of vertices of the graph
and then greedy color the vertices to provide our labeling.

The sequences of the vertices are given as follows:

(1) An alternating chain as a sequence of vertices of the form (a1, b1, a2, b2, · · · ,
ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of right vertices
with respect to ≺1 and (b1, b2, · · · , bp) is the decreasing sequence of left
vertices with respect to ≺2.

(2) A reverse alternating chain as a sequence of vertices of the form (a1, b1, a2, b2,
· · · , ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of left ver-
tices with respect to ≺1 and (b1, b2, · · · , bp) is the decreasing sequence of
right vertices with respect to ≺2;

(3) A canonical chain as a sequence of vertices of the form (a1, b1, a2, b2, · · · , ap,
bp) such that (a1, a2, · · · , ap) is the increasing sequence of right vertices with
respect to ≺3 and (b1, b2, · · · , bp) is the decreasing sequence of left vertices
with respect to ≺3;

(4) A special alternating chain as a sequence of vertices of the form (a1, b1, a2, b2,
· · · , ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of right ver-
tices with respect to ≺2 and (b1, b2, · · · , bp) is the decreasing sequence of left
vertices with respect to ≺1; and

(5) A special canonical chain as a sequence of vertices of the form (a1, b1, a2, b2,
· · · , ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of right ver-
tices with respect to ≺4 and (b1, b2, · · · , bp) is the decreasing sequence of left
vertices with respect to ≺4.

Notice that the special alternating chains, the reverse alternating chain and
the canonical chains can exist only when the number of right and left vertices are
equal. Of course, when m|n, both the chains exist. Otherwise, we shall modify
the names of the vertices a little to make them exist.

We are now ready to express the sequence (v0, v1, · · · , vn) by splitting it into
different cases which are depicted in Figures 1, 2, 3, 4, 5 and 6 for example.
In the figures, the both naming conventions for each of the vertices are given so
that the reader may cross verify the correctness for that particular instance for

each case. For convenience, also recall that q = ⌊diam(Pm
n )

2 ⌋.



12 D. Chakraborty et al.

l34 l33 l32 l31 l24 l23 l22 l21 l14 l13 l12 l11 c0 r11 r12 r13 r14 r21 r22 r23 r24 r31 r32 r33 r34
v1 v11 v13 v23 v3 v9 v15 v21 v5 v7 v17 v19 v24 v0 v10 v12 v22 v2 v8 v14 v20 v4 v6 v16 v18

L0 L1L1 L2L2 L3L3

Fig. 1: Case 1. n = 24, m = 4, diam(P 4
24) = 6, k = 7.

Case 1: when diam(Pm
n ) is even,m|n and k > diam(Pm

n ). First of all, (v0, v1, · · · ,
v2qm−1) is the alternating chain. Moreover, vn = c0.

Case 2: when diam(Pm
n ) is odd, m|n and k > diam(Pm

n )+1. First of all, v0 = cm
and (v1, v2, · · · , v2qm) is the reverse alternating chain. Moreover,

(v2qm+1, v2qm+2, · · · , v2qm+m) = (c0, c1, · · · , cm−1).

l24 l23 l22 l21 l14 l13 l12 l11 c0 c1 c2 c3 c4 r11 r12 r13 r14 r21 r22 r23 r24
v13 v11 v5 v3 v15 v9 v7 v1 v17 v18 v19 v20 v0 v14 v12 v6 v4 v16 v10 v8 v2

L0 L1L1 L2L2

Fig. 2: Case 2. n = 20, m = 4, diam(P 4
20) = 5, k = 7.

Case 3: when diam(Pm
n ) is odd, m ∤ n and k > diam(Pm

n ) + 1. Notice that, in
this case, the left vertices are (m− s) more than the right vertices. Also, L0 has
(m+ 1) vertices in this case. We shall rename some of the vertices from L0 and
temporarily call them right vertices to compensate for the (m− s) missing right
vertices, and then present the ordering. To be specific, we assign the new names
ci = roi for i ∈ {s+1, s+2, · · · ,m}. Counting the newly named central vertices
as right vertices, we have an equal number of left and right vertices now. First
of all, (v0, v1, · · · , v2qm−1) is the reverse alternating chain. Additionally,

(v2qm, v2qm+1, · · · , v2qm+s) = (c0, c1, · · · , cs).

l24 l23 l22 l21 l14 l13 l12 l11 c0 c1 c2 c3 c4 r11 r12 r13 r14 r21 r22 r23
v12 v10 v4 v2 v14 v8 v6 v0 v16 v17 v18 v19 v3 v13 v11 v5 v1 v15 v9 v7

L0 L1L1 L2L2

Fig. 3: Case 3. n = 19, m = 4, diam(P 4
19) = 5, k = 7, s = 3.

Case 4: when diam(Pm
n ) is even, m ∤ n and k > diam(Pm

n ). Notice that, in
this case, the left vertices are (m− s) more than the right vertices. Also, L0 has
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only one vertex in this case. We shall discard some vertices from the set of left
vertices, and then present the ordering. To be specific, we disregard the subset
{l11, l12, · · · , l1(m−s)}, temporarily, from the set of left vertices and consider the
alternating chain. First of all, (v0, v1, · · · , v2qm−2m+2s−1) is the alternating chain.
Additionally, (v2qm−2m+2s, v2qm−2m+2s+1, v2qm−2m+2s+2, · · · , v2qm−m+s) =
(c0, l11, l12, · · · , l1(m−s)).

l34 l33 l32 l31 l24 l23 l22 l21 l14 l13 l12 l11 c0 r11 r12 r13 r14 r21 r22 r23 r24 r31 r32
v1 v11 v13 v19 v3 v9 v15 v17 v5 v7 v22 v21 v20 v0 v10 v12 v18 v2 v8 v14 v16 v4 v6

L0 L1L1 L2L2 L3L3

Fig. 4: Case 4. n = 22, m = 4, diam(P 4
22) = 6, k = 7, s = 2.

Case 5: when diam(Pm
n ) is odd, m|n and k = diam(Pm

n ) + 1. Let the ordering
of the vertices be (v0, v1, · · · , v2qm+m). Now, vj(2q+1) = cj for all 0 ≤ j ≤ m.
The remaining vertices follow the canonical chain.

l24 l23 l22 l21 l14 l13 l12 l11 c0 c1 c2 c3 c4 r11 r12 r13 r14 r21 r22 r23 r24
v4 v9 v14 v19 v2 v7 v12 v17 v0 v5 v10 v15 v20 v3 v8 v13 v18 v1 v6 v11 v16

L0 L1L1 L2L2

Fig. 5: Case 5. n = 20, m = 4, diam(P 4
20) = 5, k = 6.

Case 6: when diam(Pm
n ) is odd, m ∤ n and k = diam(Pm

n ) + 1. For any set A,
let A⋆ represent an ordered sequence of the elements of A. Let G ∼= Pm

n and
S = V (G) = {v0, v1, v2, · · · , v2qm+s}. Then S⋆ is defined as described. First,
define

T = {vt : 0 ≤ t ≤ s(2q + 1)} − {vj(2q+1) : 0 ≤ j ≤ s}.

Order T ⋆ as canonical chain. Also, define vj(2q+1) = cj for all 0 ≤ j ≤ s. Assume
G′ to be the subgraph of G induced by the subset S − {rq1, rq2, · · · , rqs} of S.

Then G′ ∼= Pm
n′ , m|n′ and diam(G) = n′

m is even, where n′ = n− s. Define

vn = l11 and U = {vt : s(2q + 1) + 1 ≤ t < n}.

Note that U ⊂ V (G′). Order U⋆ (as vertices of G′) by the following.

(i) Special alternating chain when m and s have the same parity.
(ii) Alternating chain when m is even and s is odd.
(iii) Special canonical chain when m is odd and s is even.
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l34 l33 l32 l31 l24 l23 l22 l21 l14 l13 l12 l11 c0 c1 c2 c3 c4 r11 r12 r13 r14 r21 r22 r23 r24 r31
v6 v13 v15 v23 v4 v11 v17 v21 v2 v9 v19 v25 v0 v7 v12 v14 v24 v5 v10 v16 v22 v3 v8 v18 v20 v1

L0 L1L1 L2L2 L3L3

Fig. 6: Case 6. n = 25, m = 4, diam(P 4
25) = 7, k = 8, s = 1.

Thus, we have obtained a sequence (v0, v1, · · · , vn) in each case under con-
sideration. Now, we define, ψ(v0) = 0 and ψ(vi+1) = ψ(vi) + k+ 1− d(vi, vi+1),
recursively, for all i ∈ {1, 2, · · · , n−1}. Next, we note that ψ is a radio k-coloring.

Lemma 7. The function ψ is a radio k-coloring of Pm
n .

Proof. Notice that, the way ψ is defined, for all i ∈ {0, 1, · · · , n − 1}, we have
ψ(vi+1)− ψ(vi) = k + 1− d(vi, vi+1). Furthermore, one can observe that for all
i ∈ {0, 1, · · · , n− 2}, we have ψ(vi+2)− ψ(vi) ≥ k. As the value of the image of
ψ increases with respect to the indices of vis, ψ satisfies the conditions for being
a radio k-coloring.

This brings us to the upper bound for rck(P
m
n ).

Lemma 8. For all k > diam(Pm
n ), we have

rck(P
m
n ) ≤


nk − n2−m2

2m if ⌈ n
m⌉ is odd and m|n,

nk − n2−s2

2m + 1 if ⌈ n
m⌉ is odd and m ∤ n,

nk − n2

2m + 1 if ⌈ n
m⌉ is even and m|n,

nk − n2−(m−s)2

2m + 1 if ⌈ n
m⌉ is even and m ∤ n,

where s ≡ n (mod m).

Proof. Observe that, rck(P
m
n ) ≤ span(ψ). So, to prove the upper bound, it is

enough to show that for all k > diam(Pm
n ) and s ≡ n (mod m),

span(ψ) =


nk − n2−m2

2m if ⌈ n
m⌉ is odd and m|n,

nk − n2−s2

2m + 1 if ⌈ n
m⌉ is odd and m ∤ n,

nk − n2

2m + 1 if ⌈ n
m⌉ is even and m|n,

nk − n2−(m−s)2

2m + 1 if ⌈ n
m⌉ is even and m ∤ n.

Notice that, for odd values of diam(Pm
n ) and for even values of diam(Pm

n ) where
m|n, the whole sequence (v0, v1, · · · , vn) is optimally colored with respect to ψ.
Moreover, note that

f(v0) + f(vn) =


0 if ⌈ n

m⌉ is odd and m|n,
1 if ⌈ n

m⌉ is odd and m ∤ n,
1 if ⌈ n

m⌉ is even and m|n.
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Thus, adding these values with α1 (from Lemma 3) will complete the proof for
the first three cases.

For the final case, that is, for even values of diam(Pm
n ) where m ∤ n, the

sequence (v0, v1, · · · , v2(q−1)m+2s+1) is an optimally colored sequence. On the
other hand,
(v2(q−1)m+2s+2, v2(q−1)m+2s+3, · · · , vn) is a loosely colored sequence. Thus, the
whole sequence has exactly (m− s− 1) loosely colored pairs, namely,
(v2(q−1)m+2s+1, v2(q−1)m+2s+2), (v2(q−1)m+2s+2, v2(q−1)m+2s+3), · · · , (vn−1, vn).
These pairs are nothing but (l11, l12), (l12, l11), · · · , (l1(m−s−1), l1(m−s)). Now,
let us count how many extra colors are skipped for each pair. In fact, we claim
that the number of extra colors skipped for the pair (l1i, l1(i+1)) is one, for all
i ∈ {1, 2, · · · ,m− s− 1}. Notice that, both l1i and l1(i+1) are from L1. Thus, if
they were optimally colored, we would have had

ψ(l1(i+1)) = ψ(l1i) + k + 1− f(l1(i+1))− f(l1i) = ψ(l1i) + k − 1.

However, the distance between l1i and l1(i+1) is one. Thus, what we actually
have is

ψ(l1(i+1)) = ψ(l1i) + k + 1− d(l1(i+1), l1i) = ψ(l1i) + k.

Thus, a total of extra (m − s − 1) colors are skipped while coloring the said
loosely colored sequence. Moreover, as f(v0) + f(vn) = 2 in this case, we have
span(ψ) = α1 + (m − s − 1) + 2. Hence, simply replacing the value of α1 from
Lemma 3 in the above equation ends the proof.

2.4 The proofs

Finally we are ready to conclude the proofs.

Proof of Theorem 1 The proof follows directly from the Lemmas 6 and 8.

Proof of Theorem 2 Notice that the proof of the upper bound for Theorem 1 is
given by prescribing an algorithm (implicitly). The algorithm requires ordering
the vertices of the input graph, and then providing the coloring based on the
ordering. Each step runs in linear order of the number of vertices in the input
graph. Moreover, we have theoretically proved the tightness of the upper bound.
Thus, we are done.

Acknowledgements: This work is partially supported by the following projects:
“MA/IFCAM/18/39”, “SRG/2020/001575”, “MTR/2021/000858”, and
“NBHM/RP-8 (2020)/Fresh”. Research by the first author is partially spon-
sored by a public grant overseen by the French National Research Agency as
part of the “Investissements d’Avenir” through the IMobS3 Laboratory of Excel-
lence (ANR-10-LABX-0016) and the IDEX-ISITE initiative CAP 20-25 (ANR-
16-IDEX-0001).



16 D. Chakraborty et al.

References

1. G. Chartrand, D. Erwin, F. Harary, and P. Zhang. Radio labelings of graphs.
Bulletin of the Institute of Combinatorics and its Applications, 33:77–85, 2001.

2. G. Chartrand, D. Erwin, and P. Zhang. A graph labeling problem suggested by FM
channel restrictions. Bulletin of the Institute of Combinatorics and its Applications,
43:43–57, 2005.
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