Basics of Graph Homomorphisms

Soumen Nandi IEM Kolkata

Dept. of Mathematics IIT Dharwad, Karnataka 17/08/2021 **Digraph:** A digraph G is a finite set V = V(G) of vertices, together with a binary relation E = E(G) on V. The elements (u, v) of E are called the arcs of G.

Symmetric digraph:

Reflexive digraph:

Oriented graph: A digraph is an oriented graph if and only if it has no symmetric pair of arcs

Underlying graph: The graph with the same vertices as G, in which $\{u, v\}$ is an edge whenever at least one of (u, v), (v, u) is an arc of G

Homomorphism: A homomorphism of G to H, written as f : $G \rightarrow H$ is a mapping $f : V(G) \rightarrow V(H)$ such that $f(u)f(v) \in E(H)$ whenever $uv \in E(G)$.

Observation: A homomorphism of digraphs $G \rightarrow H$ is also a homomorphism of the underlying graphs, but not conversely

Walk: A walk in a graph G is a sequence of vertices v_0, v_1, \dots, v_k of G such that v_{i-1} and v_i are adjacent, for each $i = 1, 2, \dots, k$.

Path: A path in G is a walk in which all the vertices are distinct

Proposition: A mapping $f : V(P_k) \to V(G)$ is a homomorphism of P_k to G if and only if the sequence $f(0), f(1), \dots, f(k)$ is a walk in G

Distance: $d_G(u,v)$ is the distance (length of a shortest path) from u to v in G

Proposition: If $f: G \to H$ is a homomorphism, then $d_H(f(u), f(v)) \le d_G(u, v)$, for any two vertices u, v of G.

Cycle: A cycle in a graph G is a sequence of distinct vertices v_1, v_2, \dots, v_k of G such that each $v_i, i=2, 3, \dots, k$, is adjacent to v_{i-1} , and v_1 is adjacent to v_k .

Proposition: A mapping $f : V(C_k) \to V(G)$ is a homomorphism of C_k to G if and only if $f(0), f(1), \dots, f(k-1)$ is a closed walk in G.

Corollary: $C_{2k+1} \rightarrow C_{2l+1}$ if and only if $1 \leq k$.

Proposition: Let G and H be digraphs, and $f: G \to H$ a homomorphism. If v_0, v_1, \dots, v_k is a walk in G, then $f(v_0), f(v_1), \dots, f(v_k)$ is a walk in H, of the same net length.

Homomorphisms generalize colorings

Proposition: Homomorphisms $f: G \to K_k$ are precisely the k-colorings of G.

Corollary: If $G \to H$, then $\chi(G) \le \chi(H)$.

Theorem: For any positive integers k, l there exists a graph of chromatic number k, and girth at least l.

Proposition: There exists a triangle-free graph to which all cubic triangle-free graphs are homomorphic.

Proposition: There exists a triangle-free graph to which all cubic triangle-free graphs are homomorphic. Proof:

Step1: Construction of a triangle free target graph

Proposition: There exists a triangle-free graph to which all cubic triangle-free graphs are homomorphic. Proof:

Step1: Construction of a triangle free target graph

Step2: Construction of a homomorphism of a cubic triangle-free graph to that target graph.

Proposition: There exists a triangle-free graph to which all cubic triangle-free graphs are homomorphic. Proof:

Step1: Construction of a triangle free target graph

Step2: Construction of a homomorphism of a cubic triangle-free graph to that target graph.

Step3: Check to preserve adjacency

Proposition: There exists a triangle-free graph to which all cubic triangle-free graphs are homomorphic. Proof:

Step1: Construction of a triangle free target graph

Proposition: There exists a triangle-free graph to which all cubic triangle-free graphs are homomorphic. Proof:

Step2: Construction of a homomorphism of a cubic triangle-free graph to that target graph.

Proposition: There exists a triangle-free graph to which all cubic triangle-free graphs are homomorphic. Proof:

Step3: Check to preserve adjacency

Retraction: Suppose that the digraph H is a subgraph of the digraph G. A retraction of G to H is a homomorphism $r : G \rightarrow H$ such that r(x) = x for all $x \in V$ (H).

Core: A core is a digraph which does not retract to a proper subgraph

Proposition: A digraph is a core if and only if it is not homomorphic to a proper subgraph.

Observation: Core of a graph G is unique up to isomorphism.

Thank You