Tutorial 1

- 1. Show that C_{2m} admits a homomorphism to C_{2n} for all $m, n \geq 2$.
- 2. Let $G \to H$. Then
 - (i) Show that $\chi(G) \leq \chi(H)$.
 - (ii) Show that $\chi(G) = \min\{|V(G)| : G \to H\}.$
 - (iii) Show that $og(G) \ge og(H)$, where og(X) is the length of a smallest odd cycle of X.
- 3. Let G be a bipartite graph. Show that $G \to K_2$.
- 4. Let the class of all graphs be objects and let a morphism of G to H be a homomorphism. Show that this defines a category.
- 5. Let the class of all simple graphs be objects and let homomorphism of G to H play the role of a categorical morphism. Show that this defines a category.
- 6. Let the class of all directed graphs be objects and let homomorphism of G to H play the role of a categorical morphism. Show that this defines a category.
- 7. Let the class of all oriented graphs (directed graphs without loops or opposite arcs) be objects and let homomorphism of G to H play the role of a categorical morphism. Show that this defines a category.
- 8. Let G, H be graphs. Let $G \leq H$ if $G \to H$. Moreover, if $G \leq H$ and $H \leq G$, then G = H. Also, if $G \leq H$ and $G \neq H$, then we denote it by G < H. This is called the homomorphism order.
 - (i) Show that < defines a partial order on graphs.
 - (ii) Give example of a G = H where G and H are not isomorphic.
 - (iii) Can you find infinitely many non-isomorphic graphs which are equal (with respect to the homomorphism order)?
 - (iv) Show that there exists no graph X satisfying $K_1 < X < K_2$.
- 9. Let G, H, K be graphs. Then
 - (i) Show that $G \times H \cong H \times G$.
 - (ii) Show that $G \times (H \times K) \cong (G \times H) \times K$.
 - (iii) Show that $G \times (H + K) \cong (G \times H) + (G \times K)$.
- 10. Given two graphs G and H, their exponential graph H^G is a graph whose vertices are functions from $V(G) \to V(H)$ and two vertices (functions) f_1, f_2 are adjacent if $f_1(x)f_1(y) \in E(H)$ for all $xy \in E(G)$. Then

- (i) Show that $f: V(G) \to V(H)$ is a homomorphism if and only if f has a loop in H^G .
- (ii) Show that $H^{G+K} \cong H^G \times H^K$.
- (iii) Show that $H^{G \times K} \cong (H^G)^K$.
- (iv) Show that $G \times K \to H$ if and only if $F \to H^G$.
- 11. Show that categorical product exists for the category of directed and oriented graphs. Moreover, provide a construction to describe the product.
- 12. Let G and H be digraphs, and $f: V(G) \to V(H)$ is a homomorphism. If $v_0, v_1, v_2, \cdots, v_k$ is a walk in g, then $f(v_0), f(v_1), f(v_2), \cdots, f(v_k)$ is a walk in H, of the same net length.
- 13. A digraph with *n* vertices is acyclic if and only if $G \to \overrightarrow{T}_n$, where the transitive tournament \overrightarrow{T}_n has vertices $1, 2, 3, \dots, k$ and arcs ij for all i < j.
- 14. A digraph is a core if and only if it is homomorphic to a proper subgraph.

[Note: Suppose that the digraph H is a subgraph of the digraph G. A **retraction** of G to H is a homomorphism $r: G \to H$ such that r(x) = x for all $x \in V(H)$. A **core** is a digraph which does not retract to a proper subgraph.]