Tutorial 1

1. Show that $C_{2 m}$ admits a homomorphism to $C_{2 n}$ for all $m, n \geq 2$.
2. Let $G \rightarrow H$. Then
(i) Show that $\chi(G) \leq \chi(H)$.
(ii) Show that $\chi(G)=\min \{|V(G)|: G \rightarrow H\}$.
(iii) Show that $o g(G) \geq o g(H)$, where $o g(X)$ is the length of a smallest odd cycle of X.
3. Let G be a bipartite graph. Show that $G \rightarrow K_{2}$.
4. Let the class of all graphs be objects and let a morphism of G to H be a homomorphism. Show that this defines a category.
5. Let the class of all simple graphs be objects and let homomorphism of G to H play the role of a categorical morphism. Show that this defines a category.
6. Let the class of all directed graphs be objects and let homomorphism of G to H play the role of a categorical morphism. Show that this defines a category.
7. Let the class of all oriented graphs (directed graphs without loops or opposite arcs) be objects and let homomorphism of G to H play the role of a categorical morphism. Show that this defines a category.
8. Let G, H be graphs. Let $G \leq H$ if $G \rightarrow H$. Moreover, if $G \leq H$ and $H \leq G$, then $G=H$. Also, if $G \leq H$ and $G \neq H$, then we denote it by $G<H$. This is called the homomorphism order.
(i) Show that $<$ defines a partial order on graphs.
(ii) Give example of a $G=H$ where G and H are not isomorphic.
(iii) Can you find infinitely many non-isomorphic graphs which are equal (with respect to the homomorphism order)?
(iv) Show that there exists no graph X satisfying $K_{1}<X<K_{2}$.
9. Let G, H, K be graphs. Then
(i) Show that $G \times H \cong H \times G$.
(ii) Show that $G \times(H \times K) \cong(G \times H) \times K$.
(iii) Show that $G \times(H+K) \cong(G \times H)+(G \times K)$.
10. Given two graphs G and H, their exponential graph H^{G} is a graph whose vertices are functions from $V(G) \rightarrow V(H)$ and two vertices (functions) f_{1}, f_{2} are adjacent if $f_{1}(x) f_{1}(y) \in E(H)$ for all $x y \in E(G)$. Then
(i) Show that $f: V(G) \rightarrow V(H)$ is a homomorphism if and only if f has a loop in H^{G}.
(ii) Show that $H^{G+K} \cong H^{G} \times H^{K}$.
(iii) Show that $H^{G \times K} \cong\left(H^{G}\right)^{K}$.
(iv) Show that $G \times K \rightarrow H$ if and only if $F \rightarrow H^{G}$.
11. Show that categorical product exists for the category of directed and oriented graphs. Moreover, provide a construction to describe the product.
12. Let G and H be digraphs, and $f: V(G) \rightarrow V(H)$ is a homomorphism. If $v_{0}, v_{1}, v_{2}, \cdots, v_{k}$ is a walk in g, then $f\left(v_{0}\right), f\left(v_{1}\right), f\left(v_{2}\right), \cdots, f\left(v_{k}\right)$ is a walk in H, of the same net length.
13. A digraph with n vertices is acyclic if and only if $G \rightarrow \vec{T}_{n}$, where the transitive tournament \vec{T}_{n} has vertices $1,2,3, \cdots, k$ and arcs $i j$ for all $i<j$.
14. A digraph is a core if and only if it is homomorphic to a proper subgraph.
[Note: Suppose that the digraph H is a subgraph of the digraph G. A retraction of G to H is a homomorphism $r: G \rightarrow H$ such that $r(x)=x$ for all $x \in V(H)$. A core is a digraph which does not retract to a proper subgraph.]
