Proving the conjecture on (n, m) -absolute clique number of planar graphs

Susobhan Bandopadhyay^a, Soumen Nandi^b, Sagnik Sen^c, S Taruni^c

(a) National Institute of Science Education and Research, Bhubaneswar, India.

(b) Netaji Subhas Open University Kolkata, India.

(c) Indian Institute of Technology Dharwad, India.

March 28, 2023

Abstract

An (n, m) -graph G is a graph that has n types of arcs and m types of edges. The (n, m) chromatic number of an (n, m) -graph G is the smallest order of an (n, m) -graph H such that there exists a homomorphism that is a type (and direction) preserving vertex-mapping of G to H. An (n, m) -absolute clique C is an (n, m) -graph such that its (n, m) -chromatic number of C is its order itself. Bensmail, Duffy and Sen [Graphs and Combinatorics 2017] conjectured that if C is a planar absolute (n, m) -clique then it has at most $3(2n+m)^2+(2n+m)+1$ vertices for all $(n, m) \neq (0, 1)$. In this paper, we positively settle the conjecture for all $(n, m) \neq$ $(0, 1), (1, 0)$ and $(0, 2)$. This, along with the existing proofs for $(n, m) = (1, 0)$ and $(0, 2)$. due to Nandy, Sopena and Sen [Journal of Graph theory 2016] completes the proof of the conjecture for all values of $(n, m) \neq (0, 1)$.

Keywords: colored mixed graphs, planar graphs, homomorphisms, chromatic number, absolute clique number.

1 Introduction and the main results

The concept of (n, m) -graphs and their homomorphisms were introduced by Nessetian and Ras-paud [\[10\]](#page-7-0) as a generalization of the notion of m-edge colored graphs [\[1\]](#page-6-0) and oriented graphs [\[14\]](#page-7-1). An (n, m) -graph is a graph having n different types of arcs and m different types of edges. We denote the set of vertices, arcs and edges of an (n, m) -graph G by $V(G)$, $A(G)$, and $E(G)$, respectively. In the context of (n, m) -graphs, $(0, 1)$ -graph is an undirected graph, a $(1, 0)$ -graph is a directed graph, and a $(0, m)$ -graph is an m-edge-colored graph. We denote the underlying graph of an (n, m) -graph, by $und(G)$. In this article, we focus only on those (n, m) -graphs G whose $und(G)$ is a simple graph, unless otherwise stated. We follow West [\[15\]](#page-7-2) for standard graph-theoretic notations and terminology.

Given two (n, m) -graphs G and H, a vertex mapping $f: V(G) \to V(H)$ is a homomor*phism* of G to H if for every arc (resp., edge) uv in G, $f(u)f(v)$ is also an arc (resp., edge) in H , having the same type as uv . There are three important parameters related to the study of homomorphism of an (n, m) -graph G, namely, the (n, m) -chromatic number $\chi_{n,m}(G)$, the (n, m) -relative clique number $\omega_{r(n,m)}(G)$, and the (n, m) -absolute clique number $\omega_{a(n,m)}(G)$. The (n, m) -chromatic number $\chi_{n,m}(G)$ of G is the minimum $|V(H)|$ such that G admits a homomorphism to H, the (n, m) -relative clique number $\omega_{r(n,m)}(G)$ is the maximum cardinality of a vertex subset $R \subseteq V(G)$, called an (n, m) -relative clique such that $f(u) \neq f(v)$ for any homomorphism f of G to an (n, m) -graph H, and the (n, m) -absolute clique number $\omega_{a(n,m)}(G)$ is the maximum order of vertices of a subgraph A called an (n, m) -absolute clique satisfying an $\chi_{n,m}(A) = |V(A)|$. Observe that for $(n,m) = (0,1)$, the parameter $\chi_{n,m}$, is nothing but the chromatic number of simple graphs. Moreover the parameters $\omega_{r(n,m)}$ and $\omega_{a(n,m)}$, when restricted to the instance $(n, m) = (0, 1)$, coincide with each other and are equivalent to the notion of clique number for simple graphs. Thus, $\chi_{n,m}$ is a generalization of the notion of chromatic number for (n, m) -graphs. On the other hand, the notion of clique number for (n, m) -graphs ramified into $\omega_{r(n,m)}$ and $\omega_{a(n,m)}$. For a family F of undirected simple graphs, we have,

$$
p_{(n,m)}(\mathcal{F}) = \max\{p_{(n,m)}(G) : und(G) \in \mathcal{F}\},\
$$

where $p \in \{\chi_{n,m}, \omega_{r(n,m)}, w_{a(n,m)}\}.$

One immediate observation from the definitions of these parameters is that $[2]$,

$$
\omega_{a(n,m)}(G) \le \omega_{r(n,m)}(G) \le \chi_{n,m}(G).
$$

In a quest to find an analogous version of the 4-Color Theorem and the Grötzsch Theorem, Marshall [\[8\]](#page-7-3) and Raspaud and Sopena [\[13\]](#page-7-4) proved $18 \leq \chi_{1,0}(\mathcal{P}_3) \leq 80$, where \mathcal{P}_3 denotes the family of planar graphs. Similarly, Ochem, Pinlou and Sen [\[12\]](#page-7-5) established the bounds $20 \leq \chi_{0,2}(\mathcal{P}_3) \leq 80$. Moreover, a line of the study explored the values of $\chi_{1,0}(\mathcal{P}_g)$ and $\chi_{0,2}(\mathcal{P}_g)$ for all $g \geq 3$ establishing bounds, where \mathcal{P}_g denotes the family of planar graphs having girth at least g.

Continuing this line of study, for $\chi_{n,m}(\mathcal{P}_3)$ a lower and upper bound, cubic [\[4\]](#page-7-6) and quartic [\[11\]](#page-7-7) in $(2n + m)$, respectively, were found. Moreover, an exact bound for (n, m) -chromatic number of sparse planar graphs with a very large girth was established in [\[7\]](#page-7-8). In the study of finding absolute clique number, Bensmail, Duffy and Sen [\[2\]](#page-6-1) proved lower and upper bounds for the absolute (n, m) -clique number for the family of planar graphs,

Theorem 1.1 (Bensmail, Duffy and Sen, 2017 [\[2\]](#page-6-1)). For the family \mathcal{P}_3 of planar graphs,

$$
3(2n+m)^{2} + (2n+m) + 1 \leq \omega_{a}(n,m)(\mathcal{P}_{3}) \leq 9(2n+m)^{2} + 2(2n+m) + 2,
$$

for all $(n, m) \neq (0, 1)$.

They [\[2\]](#page-6-1) conjectured that the (n, m) -absolute clique number of planar graphs in fact attains its lower bound.

Conjecture 1.2. Let \mathcal{P}_3 denote the family of planar graphs. Then for all $(n,m) \neq (0,1)$ we have,

$$
\omega_{a(n,m)}(\mathcal{P}_3) = 3(2n+m)^2 + (2n+m) + 1.
$$

A restricted version of this conjecture for $(n, m) = (1, 0)$ was posed as a question by Klostermeyer and MacGillivray [\[6\]](#page-7-9), and it was positively settled by Nandy, Sen and Sopena [\[9\]](#page-7-10).

As we see, for the cases when $(n, m) = (1, 0)$ and $(0, 2)$, the conjecture was proved in [\[9\]](#page-7-10). In this work, we positively settle the conjecture [\[2\]](#page-6-1) for all $(n, m) \neq (0, 1), (1, 0)$ and $(0, 2)$.

Theorem 1.3. Let P_3 denote the family of planar graphs. Then for all $(n,m) \neq (0,1)$ we have,

$$
\omega_{a(n,m)}(\mathcal{P}_3) = 3(2n+m)^2 + (2n+m) + 1.
$$

Thus with this result, the study of this parameter (n, m) -absolute clique number is complete for all $(n, m) \neq (0, 1)$ $(n, m) \neq (0, 1)$. We provide a consolidated list (see Table 1) of all bounds of these three parameters for the family of planar graphs with girth restrictions to place our work in context.

	$\omega_{a(n,m)}(\mathcal{P}_g)$	$\omega_r(n,m)(\mathcal{P}_q)$	$\chi_{n,m}(\mathcal{P}_g)$
3	$3p^2 + p + 1$	$ 3p^2+p+1, 42p^2-11 $ [3]	$ p^3 + \epsilon p^2 + p + \epsilon, 5p^4 $ [4, 11]
	p^2+2 [3]	$[p^2+2, 14p^2+1]$ [3]	$[p^2+2,5p^4]$ [3, 11]
	$\max (p+1,5)$ [3]	$\max (p+1,6)$ [3]	$ 2p+1,5p^4 $ [3, 11]
	$p+1$ [3]	$\max (p+1, 4)$ [3]	$ 2p+1,5p^4 $ [3, 11]
$g \geq 7$	$p+1$ [3]	$p+1$ [3]	$ 2p+1,5p^4 $ [3, 11]
$g \geq 8p$	$p+1$ [3]	$p+1$ [3]	$2p+1$ [7]

Table 1: This is the list of all known lower and upper bounds for $\omega_{a(n,m)}(\mathcal{P}_g)$, $\omega_r(n,m)(\mathcal{P}_g)$, $\chi_{n,m}(\mathcal{P}_g)$ where \mathcal{P}_g denotes the family of planar graphs having girth at least g. Moreover, the list captures the bounds for all $(n, m) \neq (0, 1)$ where $(2n + m)$ is denoted by p. Finally, the parameter ϵ takes the value 1 when m is an odd number or 0, and takes the value 2 otherwise.

2 Proof of the Theorem [1.3](#page-1-0)

We give necessary notations and terminologies wherever required in the course of proof. As the proof is lengthy with many calculations, we give a proof sketch of the main Theorem [1.3.](#page-1-0) Interested readers are encouraged to find the detailed proofs in [https://homepages.iitdh.ac.](https://homepages.iitdh.ac.in/~sen/BNST.pdf) [in/~sen/BNST.pdf](https://homepages.iitdh.ac.in/~sen/BNST.pdf).

Any two vertices u, v in an (n, m) -graph G, can have at most $(2n + m)$ -types of adjacencies. Let the set $A_{(n,m)} = \{1, 2, 3, \cdots n, (n+1), \cdots 2n, (2n+1), (2n+2), \cdots (2n+m)\}\)$ be all the possible types of adjacencies in any (n, m) -graph. If there is an arc of type i from u to v then we say that u is a $(2i-1)$ -neighbor of v or equivalently v is a 2i-neighbor of u for all $i \in \{1, 2, 3, \dots n\}$. If there is an edge of type j between u and v, then we say that u is a $2n + j$ -neighbor of v or equivalently v is a $2n + j$ -neighbor of u for all $j \in \{1, 2, 3, \dots m\}$. If v is an α -neighbor of u, we denote it by $u \sim_\alpha v$. The set of all α -neighbors of u are denoted by $N^{\alpha}(u)$. Two vertices u, v agree on a common neighbor z if $z \in N^{\alpha}(x) \cap N^{\alpha}(y)$ for some $\alpha \in A_{(n,m)}$, disagrees on z if otherwise. A special 2-path xzy is a 2-path in G where x and y disagrees on z. We recall a useful characterization by Bensmail, Duffy and Sen [\[2\]](#page-6-1).

Proposition 2.1 (Bensmail, Duffy and Sen, 2017 [\[2\]](#page-6-1)). An (n, m) -graph is an (n, m) -clique if and only if every pair of non-adjacent vertices are joined by a special 2-path.

The lower bound of the result is already established by Bensmail, Duffy, and Sen [\[2\]](#page-6-1).

Theorem 2.2 (Bensmail, Duffy, and Sen, 2017 [\[2\]](#page-6-1)). There exists a planar (n, m) -graph P satisfying $\omega_a(n,m)(P) = 3(2n+m)^2 + (2n+m) + 1$ for all $(n,m) \neq (0,1)$.

Moreover, the result is proved for the particular cases when $(2n + m) = 2$ [\[9\]](#page-7-10). So, we need to prove that $\omega_a(n,m)(\mathcal{P}) \leq 3(2n+m)^2 + (2n+m) + 1$ for all (n,m) satisfying $(2n+m) \geq 3$. To do so, we will consider an arbitrary planar absolute (n, m) -clique H and show that it has at most $3(2n+m)^2 + (2n+m) + 1$ many vertices. For the rest of the section, let us fix an arbitrary planar absolute (n, m) -clique H, where (n, m) satisfies the condition $(2n + m) > 3$. Moreover, without loss of generality, assume that H is triangulated. We can assume so because the absolute (n, m) -clique number of a (n, m) -graph is greater than or equal to any of its subgraphs.

Observation 2.3. The underlying graph of any absolute (n, m) -clique has diameter at most 2.

Recall that a planar graph having diameter one can have at most 4 vertices. Thus, we may assume that $und(H)$ has a diameter of exactly 2. It is known [\[5\]](#page-7-11) that if a planar graph has a diameter 2, then its domination number is at most 2, but for a single exception of a graph on 11 vertices. As our relevant upper bound is greater than 11, we may assume that H has domination number at most 2. In fact, Bensmail, Duffy, and Sen $[2]$ has shown that if H has domination number 1, then it must have at most $3(2n+m)^2 + (2n+m) + 1$ many vertices.

Proposition 2.4 (Bensmail, Duffy and Sen, 2017 [\[2\]](#page-6-1)). If a planar absolute (n, m) -clique has domination number one, then it has at most $3(2n+m)^2 + (2n+m) + 1$ vertices.

In view of the above proposition, we may now assume that the domination number of H is exactly 2. Suppose that $D = \{x, y\}$ is a dominating set of size 2 of H. However, suppose that among all dominating sets of size 2 of H , D is the one for which the two vertices of D have maximum common neighbors. Before proceeding further, we will present some useful conventions used in the proof. Let $C = \{a_1, a_2, a_3, \cdots a_k\}$ be the set of all common neighbors of x and y. Let C_t^{α} be the set of all α -neighbors of t in C where $t \in \{x, y\}$. Let S_t be $N(t) \setminus C$, S_t^{α} be $N^{\alpha}(t) \setminus C$ for $t \in \{x, y\}$ and $S = S_x \cup S_y$. We fix a particular embedding of H in such a way that the vertices in C and the vertices in S_x are arranged in anti-clockwise direction in the increasing order of their indices around x. Let us call the region bounded by $\{x, a_i, y, a_{i+1}, x\}$ as R_i and let R_0 be the unbounded region. See Figure [1](#page-3-0) for reference. Our goal is to prove

$$
|V(H)| = |C| + |S| + |D| \le 3(2n + m)^{2} + (2n + m) + 1.
$$

We also further assume $p = 2n + m$ for the rest of this proof. Our proof is contained in several lemmas and observations.

Figure 1: The planar embedding of H.

Observation 2.5. Given any two vertices u and v of H, if either u, v are adjacent, or $|N(u) \cap$ $|N(v)| \geq 6$, then we have $|N^{\alpha}(u) \cap N^{\beta}(v)| \leq 3$ for any $\alpha, \beta \in A_{n,m}$.

Proof. Suppose, $|N^{\alpha}(u) \cap N^{\beta}(v)| \ge 4$, and let those vertices be $a_1, a_2, \dots a_k$, where $k \ge 4$. If u and v are adjacent, either ua_1v forms a face or ua_kv forms a face, in either case, a_1 cannot see a₄ without disturbing the planarity. Similarly, when $|N(u) \cap N(v)| \geq 6$, the only way a₁ can see a_4 is by a_6 , but that will be of distance more than 2, which is not possible. Thus we get a contradiction in either case.

 \Box

Lemma 2.6. The number of vertices in C is at most $3p^2$.

Proof. First of all, note that, as $(2n + m) \ge 3$, the quantity $3(2n + m)^2 \ge 27$. Thus, the lemma is trivially true for $|C| \leq 5$. Fix an $\alpha \in A_{n,m}$ and consider the set C_x^{α} . Notice that there can be at most 3 vertices in this set with the same type of adjacency with y due to Observation [2.5.](#page-3-1) Therefore, C_x^{α} can have at most 3p vertices. Since α is arbitrary, the maximum cardinality of the set C can be of at most $3p^2$. \Box

Lemma 2.7. If the number of vertices in C is at least $3p^2 - 3p + 5$, then $|S| = 0$

Proof. Suppose there exists a $x_i \in S$ in region R_i , then x_i can see at most 4, *i.e.* $a_{i-1}, a_i, a_{i+1}, a_{i+2}$ vertices in C without the help of x. This forces x_i to see the rest of the vertices in C via x. Thus $x \sim_j x_i$, for some $j \in A_{n,m}$, implies $x \sim_t a_s$ for some $t \in A_{n,m} \setminus \{j\}$ for all $a_s \in C \setminus \{a_{i-1}, a_i, a_{i+1}, a_{i+2}\}.$ Thus, C can have at most $p \cdot 3(p-1) + 4 = 3p^2 - 3p + 4$ vertices due to Observation [2.5,](#page-3-1) which is a contradiction. \Box

The following lemma establishes a relation between the cardinality of the set C and the set S. In particular, we prove that if C is arbitrarily small, then S is restricted to at most $3p + 1$.

Lemma 2.8. For any $t \in \{x, y\}$, for any $\alpha \in A_{n,m}$, and $|C| = k$, we have the following:

- (i) If $|C_t^{\alpha}| \geq 5$ then, we have $|S_t^{\alpha}| = 0$.
- (ii) If $|C_t^{\alpha}| \ge 4$ then, we have $|S_t^{\alpha}| \le 2$. Moreover if $k \ge 5$, then $|S_t^{\alpha}| \le 1$.
- (iii) If $|C_t^{\alpha}| \geq i$ then, $|S_t^{\alpha}| \leq 3p + 1 i$ for $k \geq 3$ and $i \in \{0, 1, 2, 3\}$. Moreover, if $|S_y| = 0$ and $|C_t^{\alpha}| \neq 0$, then $|C_t^{\alpha} \cup S_t^{\alpha}| \leq 3p$.

Proof. We give the proof of each cases separately as follows.

- (i) Observe that a vertex $x \in S_x^{\alpha}$ can see at most four vertices of C without the help of x. Moreover these four vertices have to be in adjacent regions. Let $x \in S_x^{\alpha}$ belong to the region R_i . Then, x sees a_i, a_{i+1} directly and a_{i-1}, a_{i+2} via a_i, a_{i+1} respectively. Thus, if $|C_x^{\alpha}| \geq 5$, x cannot see the remaining vertices of C_x^{α} . Hence, we get, $|S_x^{\alpha}| = 0$.
- (ii) Let $|C_x^{\alpha}| \geq 4$, then with the above proof it is clear that if $k \geq 5$, we have $|S_x^{\alpha}| \leq 1$. For the case when $|C_x^{\alpha}| = 4$ and $|C| = 4$, on the one hand, two vertices in S_x^{α} cannot be in the same region due to planarity. On the other hand, vertices from S_x^{α} cannot be present in three regions R_{i-1}, R_i, R_{i+1} as otherwise $x_i \in R_{i-1} \cap S_x^{\alpha}$ cannot see $x_{i+1} \in R_{i+1} \cap S_x^{\alpha}$ as they are at distance at least 3 from each other. Thus, we can have at most 2 vertices x_i , x_{i+1} , one in each region R_i , R_{i+1} respectively.
- (iii) Let $|C_x^{\alpha}| = i$ for $i \in \{0, 1, 2, 3\}$, if the vertices in C_x^{α} are not consecutive, then the proof follows from the above two cases. Thus the interesting case is when vertices in C_x^{α} are consecutively placed in the planar embedding of H . We deal with the sub-cases for each $i \in \{3, 2, 1, 0\}$ separately.
	- (a) Let $|C_x^{\alpha}| = 3$. Notice that for $k \geq 4$, S_x^{α} can be present only in at most two adjacent regions except for an exceptional case in which we deal separately. Let S_x^{α} be present in the regions be R_j, R_{j+1} . Firstly any two vertices in S_x^{α} cannot see each other directly, due to planarity. This forces all the vertices of $S_x^{\alpha} \cap R_j$ have to see each other via a_{j+1} and so do the vertices of $S_x^{\alpha} \cap R_{j+1}$. Suppose there are i_1 -types of adjacency among the vertices in $S_x^{\alpha} \cap R_j$ and a_{j+1} and i_2 -types of adjacencies among the vertices in $S_x^{\alpha} \cap R_{j+1}$ and assume $a_{j-1} \sim_{\beta_1} a_j$ and $a_j \sim_{\beta_2} a_{j+1}$ then, when $\beta_1 = \beta_2$, we get

 $i_1 + i_2 \leq (p-1)$ as private neighbors of x in R_j has to see private neighbors of x in R_{i+1} via a_{i+1} . As each of the adjacency types can be present at most 3 times by Observation [2.5,](#page-3-1) we get $|S_x^{\alpha}| \leq 3(p-1) = 3p-3 \leq 3p-2$. Suppose when $\beta_1 \neq \beta_2$, as all the private neighbors in R_j should see the private neighbors in R_{j+1} via a_{j+1} , notice that the vertex adjacent to a_j and a_{j+1} (we call them corner vertices for convenience) may have β_1 or β_2 without any conflict. Thus, in this case, the adjacency types can be at most, $(i_1 - 1) + (i_2 - 1) \leq (p - 2)$. Along with the four corner vertices, $|S_x^{\alpha}| \leq 3(p-2)+4 = 3p-2$. Moreover, $|S_y| = 0$, then $x \nsim y$, as otherwise, y will be dominating vertex which is not possible. Now, say suppose, $a_{i+1} \sim_\gamma y$, and $\gamma \notin {\beta_1, \beta_2}$, then these i_1 and i_2 (except for the four corner vertices) cannot be of the type β_1, β_2, γ , which forces $|S_x^{\alpha}| \leq 3(p-3)+4=3p-5$. In other case, $\gamma = \beta_1$ or β_2 , then, $|S_x^{\alpha}| \leq 3(p-2)+3=3p-3$. If $|S_x^{\alpha}|$ belong to only one region, the calculations are similar; observe that all the vertices in S_x^{α} have to see each other only via a_i and the adjacency types has to be different from β where $a_{i-1} \sim_{\beta} a_i$. Thus using Observation [2.5,](#page-3-1) we have, $|S_x^{\alpha}| \leq 3p-3$. In the exceptional case when S_x is in all regions, due to planarity, we can immediately see that at most one vertex in the region can be present implying $|S_x^{\alpha}| \leq 3$.

- (b) Let $|C_x^{\alpha}| = 2$ and for $k \geq 3$. If $a_1 \nsim a_3$, then we have $|S_x^{\alpha}| \leq 3(p-1) + 2$. The two come from the corner vertices. Moreover, if $|S_y| = 0$, then, there are two cases here. In either cases, we can observe that $|S_x^{\alpha}| \leq 3p - 2 \leq 3p$.
- (c) Let $|C_x^{\alpha}| = 0, 1$ and for $k \geq 3$, in either cases, as $x \not\sim y$, we identify x and y, we get an outer planar graph and α -neighbors of xy form a relative clique and from [\[2\]](#page-6-1), what we have is $|S_x^{\alpha}| \leq 3(p-1) + 1 \leq 3p$.

Thus from the above lemma [2.8,](#page-4-0) we get $|C_x^{\alpha} \cup S_x^{\alpha}| \leq 3p$ if x has a private α -neighbor. Thus, if there are no private neighbors of y, then we can prove that H has at most $3p^2 + p + 1$ vertices.

Lemma 2.9. If $|S_y| = 0$, then $|V(H)| \leq 3p^2 + p + 1$.

Proof. If $|S_y| = 0$, then $x \nsim y$, as otherwise, y will be a dominating vertex, which is not possible. Then triangulation of H forces the edges $a_1a_2, a_2a_3, \cdots a_{k-1}a_k$. Thus, every vertex of S has to see y via a_i or a_{i+1} . From Lemma [2.8,](#page-4-0) in all cases we have $|C_x^{\alpha} \cup S_x^{\alpha}| \leq 3p$. Therefore, $|V(H)| \leq 3p(p) + 2 = 3p^2 + 2 \leq 3p^2 + p + 1$ as $p \geq 3$. \Box

A major part of the proof lies in showing if both x and y has private neighbors, then also $|V(H)| \leq 3p^2 + p + 1$. To show that, one important bound is the following.

Lemma 2.10. If $k \geq 3$, then $|S_x^{\alpha} \cup S_y^{\beta}| \leq 3p + 1$ for any $\alpha, \beta \in A_{n,m}$.

Proof. If $k \geq 3$, if we delete the vertices x and y and look at $S_x^{\alpha} \cup S_y^{\beta}$ in every region, what we get is a outerplanar graph. Thus the set $S_x^{\alpha} \cup S_y^{\beta} \cap R_i$ induces a relative (n, m) -clique. From [\[2\]](#page-6-1), we have the bound. \Box

Lemma 2.11. For $k \geq 3$, we have $|V(H)| \leq 3p^2 + p + 1$.

Proof. Suppose there are i types of adjacency present between x and vertices in S_x and j types of adjacency present between y and vertices in S_y . Suppose t many vertices in C can see each other either directly or by special 2-path or via S_x . But the rest of $k - t$ has to see each other

 \Box

via x, these vertices can have at most $3(p-j)$ types of adjacency with y, Putting these together should be at most p . Thus we get a bound on k ,

$$
i + \frac{k - t}{3(p - j)} \le p
$$

$$
k \le 3p^2 - 3pi - 3pj + 3ij + t
$$

Without loss of generality, let us assume that $i \geq j$,

Suppose we have $\{\alpha_1, \alpha_2, \cdots \alpha_i\}$ types of adjacency between x and S_x , and $\{\beta_1, \beta_2, \cdots \beta_j\}$ types of adjacency between y and S_y , Since, $x \not\sim y$, As, $S_x^{\alpha_j} \cup S_y^{\beta_j}$ is an outerplanar graph. This set induces a relative (n, m) -clique. So we club α_i, β_i - private neighbors of x and y respectively and the remaining $(i - j)$ -types can have at most 3p vertices of that corresponding types. Thus we have,

 $|S| \leq (3p+1)j + 3p(i - j) = 3pi + j$

Using the above two equations and the fact that $i \leq p$, we get,

$$
|V(H)| \le 3pi + j + k + 2 \tag{1}
$$

$$
\leq 3p^2 - 3j(p - i) + j + t + 2\tag{2}
$$

Notice from (2), we are done for the case if $1 \leq j \leq i < p-1$ or if $1 < j \leq i \leq p-1$. Also when $j = 1, i = p-1$ and $t \leq 4$. Similarly, from (1), it is immediate to see if $i = p, j + k \leq p-1$, we are done. Now we are left to check only when $j = 1$, $i = p - 1$ and $t \ge 5$ and the case when $i = p$ and $j + k \geq p$.

Lemma 2.12. For $k = 2$, we have $|V(H)| \leq 3p^2 + p + 1$. **Lemma 2.13.** For $k = 1$, we have $|V(H)| \leq 3p^2 + p + 1$.

Proof of Theorem [1.3.](#page-1-0) As the graph H is triangulated and has diameter two, any dominating set $D = \{x, y\}$ must have at least one common neighbor. Therefore, using Lemmas [2.11,](#page-5-0) [2.12,](#page-6-3) and [2.13,](#page-6-4) we are done. \Box

Remark We are dynamically updating the proofs of the lemmas stated above; this is a preliminary version with some of the proofs.

Acknowledgements. This work is partially supported by SERB-MATRICS "Oriented chromatic and clique number of planar graphs"(MTR/2021/000858)

References

- [1] N. Alon and T. H. Marshall. Homomorphisms of edge-colored graphs and coxeter groups. Journal of Algebraic Combinatorics, 8(1):5–13, 1998.
- [2] J. Bensmail, C. Duffy, and S. Sen. Analogues of cliques for (m, n)-colored mixed graphs. Graphs and Combinatorics, 33(4):735–750, 2017.
- [3] D. Chakraborty, S. Das, S. Nandi, D. Roy, and S. Sen. On clique numbers of colored mixed graphs. Discrete Applied Mathematics, 324:29–40, 2023.

 \Box

- [4] R. Fabila-Monroy, D. Flores, C. Huemer, and A. Montejano. Lower bounds for the colored mixed chromatic number of some classes of graphs. Commentationes Mathematicae Universitatis Carolinae, 49(4):637–645, 2008.
- [5] W. Goddard and M. A. Henning. Domination in planar graphs with small diameter. Journal of Graph Theory, 40(1):1–25, 2002.
- [6] W. Klostermeyer and G. MacGillivray. Analogues of cliques for oriented coloring. Discussiones Mathematicae Graph Theory, 24(3):373–387, 2004.
- [7] A. Lahiri, S. Nandi, S. Taruni, and S. Sen. On chromatic number of (n, m)-graphs. In Extended Abstracts EuroComb 2021, pages 745–751. Springer, 2021.
- [8] T. Marshall. On oriented graphs with certain extension properties. Ars Combinatoria, 120:223–236, 2015.
- [9] A. Nandy, S. Sen, and E. Sopena. Outerplanar and planar oriented cliques. Journal of Graph Theory, 82(2):165–193, 2016.
- [10] J. Ne $\check{\rm set}$ il and A. Raspaud. Colored homomorphisms of colored mixed graphs. Journal of Combinatorial Theory, Series B, 80(1):147–155, 2000.
- [11] J. Nešetřil, A. Raspaud, and E. Sopena. Colorings and girth of oriented planar graphs. Discrete Mathematics, 165:519–530, 1997.
- [12] P. Ochem, A. Pinlou, and S. Sen. Homomorphisms of 2-edge-colored triangle-free planar graphs. Journal of Graph Theory, 85(1):258–277, 2017.
- [13] A. Raspaud and E. Sopena. Good and semi-strong colorings of oriented planar graphs. Information Processing Letters, 51(4):171–174, 1994.
- [14] E. Sopena. The chromatic number of oriented graphs. Journal of Graph Theory, 25(3):191– 205, 1997.
- [15] D. B. West. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, 2001.