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Abstract

An (n,m)-graph G is a graph that has n types of arcs and m types of edges. The (n,m)-
chromatic number of an (n,m)-graph G is the smallest order of an (n,m)-graph H such that
there exists a homomorphism that is a type (and direction) preserving vertex-mapping of G
to H. An (n,m)-absolute clique C is an (n,m)-graph such that its (n,m)-chromatic number
of C is its order itself. Bensmail, Duffy and Sen [Graphs and Combinatorics 2017] conjectured
that if C is a planar absolute (n,m)-clique then it has at most 3(2n+m)2+(2n+m)+1 vertices
for all (n,m) ̸= (0, 1). In this paper, we positively settle the conjecture for all (n,m) ̸=
(0, 1), (1, 0) and (0, 2). This, along with the existing proofs for (n,m) = (1, 0) and (0, 2)
due to Nandy, Sopena and Sen [Journal of Graph theory 2016] completes the proof of the
conjecture for all values of (n,m) ̸= (0, 1).

Keywords: colored mixed graphs, planar graphs, homomorphisms, chromatic number, absolute
clique number.

1 Introduction and the main results

The concept of (n,m)-graphs and their homomorphisms were introduced by Nešetřil and Ras-
paud [10] as a generalization of the notion of m-edge colored graphs [1] and oriented graphs [14].
An (n,m)-graph is a graph having n different types of arcs and m different types of edges.
We denote the set of vertices, arcs and edges of an (n,m)-graph G by V (G), A(G), and E(G),
respectively. In the context of (n,m)-graphs, (0, 1)-graph is an undirected graph, a (1, 0)-graph
is a directed graph, and a (0,m)-graph is an m-edge-colored graph. We denote the underlying
graph of an (n,m)-graph, by und(G). In this article, we focus only on those (n,m)-graphs G
whose und(G) is a simple graph, unless otherwise stated. We follow West [15] for standard
graph-theoretic notations and terminology.

Given two (n,m)-graphs G and H, a vertex mapping f : V (G) → V (H) is a homomor-
phism of G to H if for every arc (resp., edge) uv in G, f(u)f(v) is also an arc (resp., edge)
in H, having the same type as uv. There are three important parameters related to the study
of homomorphism of an (n,m)-graph G, namely, the (n,m)-chromatic number χn,m(G), the
(n,m)-relative clique number ωr(n,m)(G), and the (n,m)-absolute clique number ωa(n,m)(G).
The (n,m)-chromatic number χn,m(G) of G is the minimum |V (H)| such that G admits a ho-
momorphism to H, the (n,m)-relative clique number ωr(n,m)(G) is the maximum cardinality
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of a vertex subset R ⊆ V (G), called an (n,m)-relative clique such that f(u) ̸= f(v) for any
homomorphism f of G to an (n,m)-graph H, and the (n,m)-absolute clique number ωa(n,m)(G)
is the maximum order of vertices of a subgraph A called an (n,m)-absolute clique satisfying
an χn,m(A) = |V (A)|. Observe that for (n,m) = (0, 1), the parameter χn,m, is nothing but
the chromatic number of simple graphs. Moreover the parameters ωr(n,m) and ωa(n,m), when re-
stricted to the instance (n,m) = (0, 1), coincide with each other and are equivalent to the notion
of clique number for simple graphs. Thus, χn,m is a generalization of the notion of chromatic
number for (n,m)-graphs. On the other hand, the notion of clique number for (n,m)-graphs
ramified into ωr(n,m) and ωa(n,m). For a family F of undirected simple graphs, we have,

p(n,m)(F) = max{p(n,m)(G) : und(G) ∈ F},

where p ∈ {χn,m, ωr(n,m), wa(n,m)}.
One immediate observation from the definitions of these parameters is that [2],

ωa(n,m)(G) ≤ ωr(n,m)(G) ≤ χn,m(G).

In a quest to find an analogous version of the 4-Color Theorem and the Grötzsch Theorem,
Marshall [8] and Raspaud and Sopena [13] proved 18 ≤ χ1,0(P3) ≤ 80, where P3 denotes
the family of planar graphs. Similarly, Ochem, Pinlou and Sen [12] established the bounds
20 ≤ χ0,2(P3) ≤ 80. Moreover, a line of the study explored the values of χ1,0(Pg) and χ0,2(Pg)
for all g ≥ 3 establishing bounds, where Pg denotes the family of planar graphs having girth at
least g.

Continuing this line of study, for χn,m(P3) a lower and upper bound, cubic [4] and quartic [11]
in (2n +m), respectively, were found. Moreover, an exact bound for (n,m)-chromatic number
of sparse planar graphs with a very large girth was established in [7]. In the study of finding
absolute clique number, Bensmail, Duffy and Sen [2] proved lower and upper bounds for the
absolute (n,m)-clique number for the family of planar graphs,

Theorem 1.1 (Bensmail, Duffy and Sen, 2017 [2]). For the family P3 of planar graphs,

3(2n+m)2 + (2n+m) + 1 ≤ ωa(n,m)(P3) ≤ 9(2n+m)2 + 2(2n+m) + 2,

for all (n,m) ̸= (0, 1).

They [2] conjectured that the (n,m)-absolute clique number of planar graphs in fact attains
its lower bound.

Conjecture 1.2. Let P3 denote the family of planar graphs. Then for all (n,m) ̸= (0, 1) we
have,

ωa(n,m)(P3) = 3(2n+m)2 + (2n+m) + 1.

A restricted version of this conjecture for (n,m) = (1, 0) was posed as a question by Kloster-
meyer and MacGillivray [6], and it was positively settled by Nandy, Sen and Sopena [9].

As we see, for the cases when (n,m) = (1, 0) and (0, 2), the conjecture was proved in [9]. In
this work, we positively settle the conjecture [2] for all (n,m) ̸= (0, 1), (1, 0) and (0, 2).

Theorem 1.3. Let P3 denote the family of planar graphs. Then for all (n,m) ̸= (0, 1) we have,

ωa(n,m)(P3) = 3(2n+m)2 + (2n+m) + 1.

Thus with this result, the study of this parameter (n,m)-absolute clique number is complete
for all (n,m) ̸= (0, 1). We provide a consolidated list (see Table 1) of all bounds of these three
parameters for the family of planar graphs with girth restrictions to place our work in context.
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g ωa(n,m)(Pg) ωr(n,m)(Pg) χn,m(Pg)

3 3p2 + p+ 1
[
3p2 + p+ 1, 42p2 − 11

]
[3]

[
p3 + ϵp2 + p+ ϵ, 5p4

]
[4, 11]

4 p2 + 2 [3]
[
p2 + 2, 14p2 + 1

]
[3]

[
p2 + 2, 5p4

]
[3, 11]

5 max (p+ 1, 5) [3] max (p+ 1, 6) [3]
[
2p+ 1, 5p4

]
[3, 11]

6 p+ 1 [3] max (p+ 1, 4) [3]
[
2p+ 1, 5p4

]
[3, 11]

g ≥ 7 p+ 1 [3] p+ 1 [3]
[
2p+ 1, 5p4

]
[3, 11]

g ≥ 8p p+ 1 [3] p+ 1 [3] 2p+ 1 [7]

Table 1: This is the list of all known lower and upper bounds for ωa(n,m)(Pg), ωr(n,m)(Pg),
χn,m(Pg) where Pg denotes the family of planar graphs having girth at least g. Moreover, the
list captures the bounds for all (n,m) ̸= (0, 1) where (2n + m) is denoted by p. Finally, the
parameter ϵ takes the value 1 when m is an odd number or 0, and takes the value 2 otherwise.

2 Proof of the Theorem 1.3

We give necessary notations and terminologies wherever required in the course of proof. As
the proof is lengthy with many calculations, we give a proof sketch of the main Theorem 1.3.
Interested readers are encouraged to find the detailed proofs in https://homepages.iitdh.ac.

in/~sen/BNST.pdf.
Any two vertices u, v in an (n,m)-graph G, can have at most (2n+m)-types of adjacencies.

Let the set A(n,m) = {1, 2, 3, · · ·n, (n+1), · · · 2n, (2n+1), (2n+2), · · · (2n+m)} be all the possible
types of adjacencies in any (n,m)-graph. If there is an arc of type i from u to v then we say
that u is a (2i− 1)-neighbor of v or equivalently v is a 2i-neighbor of u for all i ∈ {1, 2, 3, · · ·n}.
If there is an edge of type j between u and v, then we say that u is a 2n + j-neighbor of v or
equivalently v is a 2n + j-neighbor of u for all j ∈ {1, 2, 3, · · ·m}. If v is an α-neighbor of u,
we denote it by u ∼α v. The set of all α-neighbors of u are denoted by Nα(u). Two vertices
u, v agree on a common neighbor z if z ∈ Nα(x) ∩ Nα(y) for some α ∈ A(n,m), disagrees on z
if otherwise. A special 2-path xzy is a 2-path in G where x and y disagrees on z. We recall a
useful characterization by Bensmail, Duffy and Sen [2].

Proposition 2.1 (Bensmail, Duffy and Sen, 2017 [2]). An (n,m)-graph is an (n,m)-clique if
and only if every pair of non-adjacent vertices are joined by a special 2-path.

The lower bound of the result is already established by Bensmail, Duffy, and Sen [2].

Theorem 2.2 (Bensmail, Duffy, and Sen, 2017 [2]). There exists a planar (n,m)-graph P
satisfying ωa(n,m)(P ) = 3(2n+m)2 + (2n+m) + 1 for all (n,m) ̸= (0, 1).

Moreover, the result is proved for the particular cases when (2n +m) = 2 [9]. So, we need
to prove that ωa(n,m)(P) ≤ 3(2n+m)2 + (2n+m) + 1 for all (n,m) satisfying (2n+m) ≥ 3.
To do so, we will consider an arbitrary planar absolute (n,m)-clique H and show that it has at
most 3(2n+m)2+(2n+m)+1 many vertices. For the rest of the section, let us fix an arbitrary
planar absolute (n,m)-clique H, where (n,m) satisfies the condition (2n +m) ≥ 3. Moreover,
without loss of generality, assume thatH is triangulated. We can assume so because the absolute
(n,m)-clique number of a (n,m)-graph is greater than or equal to any of its subgraphs.

Observation 2.3. The underlying graph of any absolute (n,m)-clique has diameter at most 2.

Recall that a planar graph having diameter one can have at most 4 vertices. Thus, we may
assume that und(H) has a diameter of exactly 2. It is known [5] that if a planar graph has
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a diameter 2, then its domination number is at most 2, but for a single exception of a graph
on 11 vertices. As our relevant upper bound is greater than 11, we may assume that H has
domination number at most 2. In fact, Bensmail, Duffy, and Sen [2] has shown that if H has
domination number 1, then it must have at most 3(2n+m)2 + (2n+m) + 1 many vertices.

Proposition 2.4 (Bensmail, Duffy and Sen, 2017 [2]). If a planar absolute (n,m)-clique has
domination number one, then it has at most 3(2n+m)2 + (2n+m) + 1 vertices.

In view of the above proposition, we may now assume that the domination number of H
is exactly 2. Suppose that D = {x, y} is a dominating set of size 2 of H. However, suppose
that among all dominating sets of size 2 of H, D is the one for which the two vertices of
D have maximum common neighbors. Before proceeding further, we will present some useful
conventions used in the proof. Let C = {a1, a2, a3, · · · ak} be the set of all common neighbors of
x and y. Let Cα

t be the set of all α-neighbors of t in C where t ∈ {x, y}. Let St be N(t) \ C,
Sα
t be Nα(t) \ C for t ∈ {x, y} and S = Sx ∪ Sy. We fix a particular embedding of H in such a

way that the vertices in C and the vertices in Sx are arranged in anti-clockwise direction in the
increasing order of their indices around x. Let us call the region bounded by {x, ai, y, ai+1, x}
as Ri and let R0 be the unbounded region. See Figure 1 for reference. Our goal is to prove

|V (H)| = |C|+ |S|+ |D| ≤ 3(2n+m)2 + (2n+m) + 1.

We also further assume p = 2n+m for the rest of this proof. Our proof is contained in several
lemmas and observations.

R0

x

y

a1 a2 akR1

x

y

a1 a2 akR1

Figure 1: The planar embedding of H.

Observation 2.5. Given any two vertices u and v of H, if either u, v are adjacent, or |N(u)∩
N(v)| ≥ 6, then we have |Nα(u) ∩Nβ(v)| ≤ 3 for any α, β ∈ An,m.

Proof. Suppose, |Nα(u) ∩Nβ(v)| ≥ 4, and let those vertices be a1, a2, · · · ak, where k ≥ 4. If u
and v are adjacent, either ua1v forms a face or uakv forms a face, in either case, a1 cannot see
a4 without disturbing the planarity. Similarly, when |N(u) ∩ N(v)| ≥ 6, the only way a1 can
see a4 is by a6, but that will be of distance more than 2, which is not possible. Thus we get a
contradiction in either case.

Lemma 2.6. The number of vertices in C is at most 3p2.
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Proof. First of all, note that, as (2n+m) ≥ 3, the quantity 3(2n+m)2 ≥ 27. Thus, the lemma
is trivially true for |C| ≤ 5. Fix an α ∈ An,m and consider the set Cα

x . Notice that there can be
at most 3 vertices in this set with the same type of adjacency with y due to Observation 2.5.
Therefore, Cα

x can have at most 3p vertices. Since α is arbitrary, the maximum cardinality of
the set C can be of at most 3p2.

Lemma 2.7. If the number of vertices in C is at least 3p2 − 3p+ 5, then |S| = 0

Proof. Suppose there exists a xi ∈ S in regionRi, then xi can see at most 4, i.e. ai−1, ai, ai+1, ai+2

vertices in C without the help of x. This forces xi to see the rest of the vertices in C via
x. Thus x ∼j xi, for some j ∈ An,m, implies x ∼t as for some t ∈ An,m \ {j} for all
as ∈ C \ {ai−1, ai, ai+1, ai+2}. Thus, C can have at most p · 3(p − 1) + 4 = 3p2 − 3p + 4
vertices due to Observation 2.5, which is a contradiction.

The following lemma establishes a relation between the cardinality of the set C and the set
S. In particular, we prove that if C is arbitrarily small, then S is restricted to at most 3p+ 1.

Lemma 2.8. For any t ∈ {x, y}, for any α ∈ An,m, and |C| = k, we have the following:

(i) If |Cα
t | ≥ 5 then, we have |Sα

t | = 0.

(ii) If |Cα
t | ≥ 4 then, we have |Sα

t | ≤ 2. Moreover if k ≥ 5, then |Sα
t | ≤ 1.

(iii) If |Cα
t | ≥ i then, |Sα

t | ≤ 3p+ 1− i for k ≥ 3 and i ∈ {0, 1, 2, 3}. Moreover, if |Sy| = 0 and
|Cα

t | ≠ 0, then |Cα
t ∪ Sα

t | ≤ 3p.

Proof. We give the proof of each cases separately as follows.

(i) Observe that a vertex x ∈ Sα
x can see at most four vertices of C without the help of x.

Moreover these four vertices have to be in adjacent regions. Let x ∈ Sα
x belong to the

region Ri. Then, x sees ai, ai+1 directly and ai−1, ai+2 via ai, ai+1 respectively. Thus, if
|Cα

x | ≥ 5, x cannot see the remaining vertices of Cα
x . Hence, we get, |Sα

x | = 0.

(ii) Let |Cα
x | ≥ 4, then with the above proof it is clear that if k ≥ 5, we have |Sα

x | ≤ 1. For
the case when |Cα

x | = 4 and |C| = 4, on the one hand, two vertices in Sα
x cannot be in the

same region due to planarity. On the other hand, vertices from Sα
x cannot be present in

three regions Ri−1, Ri, Ri+1 as otherwise xi ∈ Ri−1 ∩ Sα
x cannot see xi+1 ∈ Ri+1 ∩ Sα

x as
they are at distance at least 3 from each other. Thus, we can have at most 2 vertices xi,
xi+1, one in each region Ri, Ri+1 respectively.

(iii) Let |Cα
x | = i for i ∈ {0, 1, 2, 3}, if the vertices in Cα

x are not consecutive, then the proof
follows from the above two cases. Thus the interesting case is when vertices in Cα

x are
consecutively placed in the planar embedding of H. We deal with the sub-cases for each
i ∈ {3, 2, 1, 0} separately.

(a) Let |Cα
x | = 3. Notice that for k ≥ 4, Sα

x can be present only in at most two adjacent
regions except for an exceptional case in which we deal separately. Let Sα

x be present in
the regions be Rj , Rj+1. Firstly any two vertices in Sα

x cannot see each other directly,
due to planarity. This forces all the vertices of Sα

x ∩ Rj have to see each other via
aj+1 and so do the vertices of Sα

x ∩ Rj+1. Suppose there are i1-types of adjacency
among the vertices in Sα

x ∩Rj and aj+1 and i2-types of adjacencies among the vertices
in Sα

x ∩ Rj+1 and assume aj−1 ∼β1 aj and aj ∼β2 aj+1 then, when β1 = β2, we get
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i1 + i2 ≤ (p − 1) as private neighbors of x in Rj has to see private neighbors of x
in Rj+1 via aj+1. As each of the adjacency types can be present at most 3 times by
Observation 2.5, we get |Sα

x | ≤ 3(p− 1) = 3p− 3 ≤ 3p− 2. Suppose when β1 ̸= β2, as
all the private neighbors in Rj should see the private neighbors in Rj+1 via aj+1, notice
that the vertex adjacent to aj and aj+1(we call them corner vertices for convenience)
may have β1 or β2 without any conflict. Thus, in this case, the adjacency types
can be at most, (i1 − 1) + (i2 − 1) ≤ (p − 2). Along with the four corner vertices,
|Sα

x | ≤ 3(p − 2) + 4 = 3p − 2. Moreover, |Sy| = 0, then x ̸∼ y, as otherwise, y
will be dominating vertex which is not possible. Now, say suppose, aj+1 ∼γ y, and
γ ̸∈ {β1, β2}, then these i1 and i2 (except for the four corner vertices) cannot be of
the type β1, β2, γ, which forces |Sα

x | ≤ 3(p − 3) + 4 = 3p − 5. In other case, γ = β1
or β2, then, |Sα

x | ≤ 3(p − 2) + 3 = 3p − 3. If |Sα
x | belong to only one region, the

calculations are similar; observe that all the vertices in Sα
x have to see each other only

via ai and the adjacency types has to be different from β where ai−1 ∼β ai. Thus
using Observation 2.5, we have, |Sα

x | ≤ 3p − 3. In the exceptional case when Sx is in
all regions, due to planarity, we can immediately see that at most one vertex in the
region can be present implying |Sα

x | ≤ 3.

(b) Let |Cα
x | = 2 and for k ≥ 3. If a1 ̸∼ a3, then we have |Sα

x | ≤ 3(p − 1) + 2. The two
come from the corner vertices. Moreover, if |Sy| = 0, then, there are two cases here.
In either cases, we can observe that |Sα

x | ≤ 3p− 2 ≤ 3p.

(c) Let |Cα
x | = 0, 1 and for k ≥ 3, in either cases, as x ̸∼ y, we identify x and y, we get an

outer planar graph and α-neighbors of xy form a relative clique and from [2], what we
have is |Sα

x | ≤ 3(p− 1) + 1 ≤ 3p.

Thus from the above lemma 2.8, we get |Cα
x ∪ Sα

x | ≤ 3p if x has a private α-neighbor. Thus,
if there are no private neighbors of y, then we can prove that H has at most 3p2+p+1 vertices.

Lemma 2.9. If |Sy| = 0, then |V (H)| ≤ 3p2 + p+ 1.

Proof. If |Sy| = 0, then x ̸∼ y, as otherwise, y will be a dominating vertex, which is not possible.
Then triangulation of H forces the edges a1a2, a2a3, · · · ak−1ak. Thus, every vertex of S has
to see y via ai or ai+1. From Lemma 2.8, in all cases we have |Cα

x ∪ Sα
x | ≤ 3p. Therefore,

|V (H)| ≤ 3p(p) + 2 = 3p2 + 2 ≤ 3p2 + p+ 1 as p ≥ 3.

A major part of the proof lies in showing if both x and y has private neighbors, then also
|V (H)| ≤ 3p2 + p+ 1. To show that, one important bound is the following.

Lemma 2.10. If k ≥ 3, then |Sα
x ∪ Sβ

y | ≤ 3p+ 1 for any α, β ∈ An,m.

Proof. If k ≥ 3, if we delete the vertices x and y and look at Sα
x ∪ Sβ

y in every region, what we

get is a outerplanar graph. Thus the set Sα
x ∪Sβ

y ∩Ri induces a relative (n,m)-clique. From [2],
we have the bound.

Lemma 2.11. For k ≥ 3, we have |V (H)| ≤ 3p2 + p+ 1.

Proof. Suppose there are i types of adjacency present between x and vertices in Sx and j types
of adjacency present between y and vertices in Sy. Suppose t many vertices in C can see each
other either directly or by special 2-path or via Sx. But the rest of k − t has to see each other
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via x,these vertices can have at most 3(p− j) types of adjacency with y, Putting these together
should be at most p. Thus we get a bound on k,

i+
k − t

3(p− j)
≤ p

k ≤ 3p2 − 3pi− 3pj + 3ij + t

Without loss of generality, let us assume that i ≥ j,
Suppose we have {α1, α2, · · ·αi} types of adjacency between x and Sx, and {β1, β2, · · ·βj}

types of adjacency between y and Sy, Since, x ̸∼ y, As, S
αj
x ∪S

βj
y is an outerplanar graph. This

set induces a relative (n,m)-clique. So we club αj , βj- private neighbors of x and y respectively
and the remaining (i− j)-types can have at most 3p vertices of that corresponding types. Thus
we have,

|S| ≤ (3p+ 1)j + 3p(i− j) = 3pi+ j

Using the above two equations and the fact that i ≤ p, we get,

|V (H)| ≤ 3pi+ j + k + 2 (1)

≤ 3p2 − 3j(p− i) + j + t+ 2 (2)

Notice from (2), we are done for the case if 1 ≤ j ≤ i < p− 1 or if 1 < j ≤ i ≤ p− 1. Also
when j = 1, i = p−1 and t ≤ 4. Similarly, from (1), it is immediate to see if i = p, j+k ≤ p−1,
we are done. Now we are left to check only when j = 1, i = p− 1 and t ≥ 5 and the case when
i = p and j + k ≥ p.

Lemma 2.12. For k = 2, we have |V (H)| ≤ 3p2 + p+ 1.

Lemma 2.13. For k = 1, we have |V (H)| ≤ 3p2 + p+ 1.

Proof of Theorem 1.3. As the graph H is triangulated and has diameter two, any dominating
set D = {x, y} must have at least one common neighbor. Therefore, using Lemmas 2.11, 2.12,
and 2.13, we are done.

Remark We are dynamically updating the proofs of the lemmas stated above; this is a
preliminary version with some of the proofs.
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