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Abstract-In this paper, we present the design of a new 
Java based, cycle-accurate, heterogeneous architectural simulator, 
Tejas. Tejas is a trace driven simulator, which is platform­
independent. It can simulate binaries in any ISA and correspond­
ing to virtually any operating system. It can itself run on virtually 
any machine. It is one of the fastest cycle accurate simulators 
available in academia. This is achieved through employing opti­
mized data structures, improving the simulator's cache locality, 
and reducing the amount of wasteful work done. Tejas offers a 
rich library of architectural features that are modular and highly 
configurable. Tejas has been validated against real hardware (Dell 
PowerEdge R620 server) and has been shown to be more accurate 
than some of the most popular architectural simulators. 

I. INTRODUCTION 

An architecture simulator is arguably the most important 
tool in computer architecture education, design, and research. 
It is used to teach basic concepts, prototype new designs, and 
estimate performance, temperature, and power. As a natural 
consequence of such requirements, many architectural simu­
lators [1-5] have been developed and distributed under open 
source licenses over the last two decades. Most research groups 
use and extend them to evaluate their proposals. Research 
in the design of architectural simulators has mainly focused 
on incorporating novel features [6] , parallelization [4, 7] , and 
speed enhancing techniques [4, 7, 8] by sacrificing on cycle 
accurate guarantees. However, the problem of having a flexible 
and platform independent simulation framework that can run 
over the cloud, and can incorporate instruction emulators 
through a standardized interface has not received a lot of 
attention. We solve this problem in this paper by proposing 
the design of Tejas, which has been released under an open 
source Apache 2 license. 

An architectural simulator consists of an instruction emula­
tor that executes the workload, and a timing simulation engine 
that simulates the execution of the workload on a hypothetical 
machine. In Tejas we have decoupled these modules. This 
was done because instruction emulators are typically platform 
dependent, or can often be proprietary and make their services 
available over the network. The simulation engine, however, 
need not be tied to any platform. All other popular open 
source simulators (to the best of our knowledge) are written 
in C/C++, which makes them dependent on a platform to a 
large extent. In Tejas, the simulation engine is made platform 
independent by being implemented in Java. It can interact 
with many different instruction emulators that are possibly 
executing on remote machines through standardized interfaces. 
We have tested Tejas on Linux, Windows and OSX platforms, 
and present the results for the Linux platform in this paper. 
The transfer of the execution trace from the emulator to the 

9781467394192/15/$31.00 ©2015 IEEE 47 

simulator can be either online (the current distribution of Tejas 
supports shared memory, memory mapped files and sockets) 
or offline through trace files. Note that with trace files, the 
platform specific phase of trace collection needs to be done 
only once. The simulation of the trace, whose outcome is 
agnostic to the underlying platform, can then be done any 
number of times on any kind of machine. 

Apart from being portable, Tejas is competitive with 
other simulators in terms of functionality. It simulates non­
uniform caches, out-of-order pipelines, complex on-chip net­
works (NoCs), relaxed memory models, and CUDA based 
GPGPUs. In terms of speed, it is faster than several popularly 
used cycle accurate simulators, and has additionally been 
thoroughly validated against native hardware. 

Our contributions can be divided into two categories. The 
first category of techniques are focused on creating an efficient 
transfer mechanism between the emulators and the timing 
simulator, and on leveraging the features of Java to the utmost 
extent. The second category of optimizations are general tech­
niques that can be used with all high performance architecture 
simulators. They focus on methods to efficiently and accurately 
simulate out-of-order pipelines, memory hierarchies, imple­
ment coherence protocols with relaxed memory models, and 
simulate complex NoCs. We evaluate the cumulative effect of 
all our proposed techniques in Section VII for both serial and 
parallel workloads. We compare our results with two popular 
cycle accurate simulators: GemS and Multi2Sim. Tejas is on 
an average 25% faster than Multi2Sim and 220% faster than 
GemS (for serial workloads). The error in estimating execution 
time for serial and parallel workloads is 11.45 and 18.77% 
respectively, which is mostly better than previously published 
results. Tejas provides comparable architectural simulation 
capabilities with a fairly small code base - it contains 32k 
lines of code, which is significantly lesser than other competing 
simulators (Sniper: 76k lines, Multi2Sim: 108k lines, GemS: 
170k lines). 

Readers can look at the full version of the paper [9] with 
the attached appendices for sample code in our custom ISA, 
VISA, details of the translation process, and simulation results 
on the Windows and OSX platforms. 

A. Related Work and Motivation 

Some of the most popular cycle accurate architecture 
simulators are SimpleScalar [2] , Sesc [3],  GemS [5] , and 
Multi2Sim [6] . They typically have built-in emulators for 
specific ISAs, which can emulate the execution of binaries. 
Typically both the emulator and timing simulator are a part of 
the same software package. Multi2Sim is the closest to Tejas 



in terms of functionality. Like Tejas it supports the simulation 
of heterogeneous systems with CPUs and GPUs. Similar to 
Tejas, Multi2Sim and GemS can also simulate the full software 
stack inclusive of the OS and hypervisor. Unlike, Tejas none 
of the popularly used simulators have platform independence 
as a major design goal. 

. 
The�e is another line of work that focuses on parallelizing 

sImulatlOn such as the papers on Sniper [4] , Graphite [7] , and 
ZSim [10] . Simulators such as Sniper [4] and ESesc [1] also 
incorporate novel techniques such as sampled simulation or 
analytical modeling, which allow them to skip a large number 
of instructions because their behavior is predictable. Both these 
techniques are orthogonal to our approaches. Tejas can be 
parallelized (see [11]), and can also be extended to incorporate 
sampled simulation. 

Motivation: We believe that platform independence is an 
important goal to pursue. The first reason is that most users 
typically struggle with building and running a simulator on 
their systems. This is primarily because of the dependence 
on libraries with often antiquated versions, and because of 
discrepancies between compiler optimizations and OS libraries 
(such as stack randomization on Ubuntu platforms). Second is 
the need to make the simulator cloud-compliant. The typical 
usage of an architectural simulator is to perform design space 
explorations. This involves a massive number of mutually 
independent simulation runs, an ideal workload for a cloud 
setup. However, clouds are usually made up of heterogeneous 
platforms (ISA, OS, libraries). The file mode of Tejas provides 
the 

.
necessary insulation from all platform-specific idiosyn­

crasIes. 

Additionally Java is known for its superior prograrmning 
constructs, support for garbage collection, type safety, and ease 
of debugging. Skeptics might argue that Java has traditionally 
been associated with lower performance. To debunk this myth 
we considered three of the most commonly used data struc­
tures in our simulator: priority queue, circular queue, and set 
associative cache. We implemented them in both C++ (g++ 
4.7.2, optimization level 3, standard template library, libstdc++ 
6.0) and Java (JDK 7) and turned on all the optimizations. 
We executed a workload containing a billion operations on a 
2.53 GHz Intel Nehalem based system for all the three data 
structures. Java was found to be 6.5%, -4.9% and 23% faster 
than C++ for the priority queue, circular queue and cache 
structures respectively. The gain is primarily due to efficient 
just-in-time compilation features of the JVM. 

II. ARCHITECTURE OF Tejas 

The high level architecture of Tejas is shown in Figure 1. 
The emulator emulates the execution of the program and 
generates traces containing dynamic information such as in­
structions executed, load/store addresses, and branch outcomes 
(taken/not-taken). The emulator is dependent on the platform. 
The collected traces are then sent to the timing simulator, 
which is written in Java. Subsequently, the timing simulator 
translates the instructions into a custom instruction set called 
VISA (see Section V). The simulated cores take the stream 
of VISA instructions as an input and simulate the pipelines. 
They send the memory accesses to memory elements through 
the simulated on-chip network. At the end of the simulation, 
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Fig. 1: High level architecture of Tejas 
we report detailed statistics regarding the usage of each com­
ponent, the IPCs, the miss rates of different memory structures, 
and the power consumption figures. 

III. EMULATOR 

Tejas is a trace driven simulator. The onus of correct 
execution of the benchmark is on the emulator, and not Tejas. 
Since many efficient open-source emulators are already avail­
able, our effort is limited to instrumenting these emulators for 
feeding information to Tejas. Currently, we have instrumented 
(1) Intel Pin [12] to emulate x86 binaries, (2) Qemu [13] to 
emulate full systems including the OS and hypervisor, (3) GPU 
Ocelot [14] to emulate CUDA-based GPGPU workloads and 
(4) Jikes RVM to emulate Java bytecode. Note that PIN, Q�mu, 
and Jikes have been released for a wide variety of platforms: 
Windows, Linux, and MacOS X, and thus they are aligned 
to 

.
our goal of platform independence. The modular design of 

Tejas allows the user to easily connect to different emulators, 
corresponding to different target platforms. 

The emulator executes the concerned benchmark, and sends 
events of interest to the simulator. The primary events of 
interest are instruction type, operands, load/store value, and 
branch information. For parallel benchmarks, the emulator logs 
the synchronization action for each thread. For full system 
simulation, events such as system calls, interrupts, and process­
switches are noted. The events of interest are encoded using 
a generic packet interface. The packet contains three fields 
<ip, packet-type, value>, each encoded as a 64 bit 
long value. The only exception is a packet describing the 
assembly text of an instruction. For such packets, the value 
field is a character array of 64 bytes (see Section IV). 

IV. TRANSFER ENGINE 

Emulated application threads run in parallel, and gigabytes 
of trace data are generated per second. It is necessary to 
send all of this data to the timing simulator using a high 
throughput channel. Here again, Tejas's modular design allows 
any communication mechanism to be employed. The current 
distribution of Tejas provides support for: (1) shared memory, 
(2) files, (3) pipes and (4) network sockets. We find shared 
memory to be the best online mechanism. For an offline 
solution, we can save the traces in files, and run the timing 
simulation using the traces from the files. 

To measure the peak throughput of each online mechanism, 
we wrote a small compute intensive loop based benchmark. For 



TABLE I: Comparison of IPC techniques 

!PC Technique Speed (MB per second) 

Sockets 9 
Memory Mapped File 21 

Shared Memory 24 

this experiment, we measured the time taken to transfer 1 GB 
of data from the emulator to the simulator on an Intel Core 
i7 desktop (2.4 GHz processor, 4 GB RAM, Ubuntu Linux 
12.04). Table I shows the results. We observe that sockets are 
the slowest (10 MBps). This is because of the overhead of 
system calls. However, they can be used to run the emulator 
remotely. For high throughput, shared memory is the best 
option (24 MBps). Communication with memory mapped files 
is slower, because we need to synchronize data with the hard 
disk, or the disk cache in main memory. Since we have a finite 
number of buffers, we need a method for the consumer(Java 
thread) to indicate to the producer(emulator) that it cannot 
accept more packets for the time being. In the case of sockets, 
we use a dedicated socket from the consumer to the producer, 
and for shared memory or memory mapped files, we use shared 
variables to indicate the status of the consumer. 

Shared Memory: We will now briefly discuss the imple­
mentation of a shared memory based transfer engine for Linux 
on x86 platforms. We use the shmget and shmat calls to get 
and attach shared memory segments to the emulator processes. 
We avoid using a separate shared memory segment for each 
application thread because underlying operating systems typi­
cally place a limit on the number of shared memory segments 
a process can use. Subsequently, we divide the segment into 
n contiguous regions, one for each application thread. In each 
region we have a header, and a circular queue. We fix the 
size of each packet to 192 bytes, and allocate space for 50 
packets in each circular queue. The header contains the status 
of the thread, the number of outstanding packets in the queue 
(count), and its head and tail pointers. 

At the Java side, we use the Java Native Interface (JNI) 
to access shared memory. It allows us to write code in C that 
can be linked to the JVM in runtime. The second issue is 
that of locking. We need to be able to get locks to update 
the pointers to the circular queue, and the count variable. 
We use a Peterson lock for this purpose. The implementation 
of the lock is optimized for the Intel x86 TSO (total store 
order) memory model. It uses a single fence instruction. JNI 
uses Intel x86 string instructions to transfer large amounts 
of data between memory locations in one go. Hence, we 
homogenized the structure of a packet, at the cost of space. 
Each packet contains three 64 byte fields. We use a single JNI 
call, memcpy( void*, canst void*, size_t) to copy an entire 
memory area into the address space of Java threads. Secondly, 
note that Java is big-endian while Intel x86 is IittIe-endian. 
While transferring values to the JVM, JNI routines seamlessly 
convert little end ian values to big endian ones. 

Compensation for OS Jitter: We observed that for 
multi-threaded benchmarks, the simulated IPC across multiple 
runs of the same configuration varied by around 5%. This 
magnitude of noise is not acceptable in practical research 
scenarios. The primary reason for the variability is that some 
application threads were not getting scheduled by the OS as 
much as others. In this case, their associated cores in the timing 
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simulator were remammg idle. To compensate for this, we 
impose a constraint that allows a simulated core to remain 
idle only if the corresponding application thread is waiting for 
an external blocking event such as a lock to be released. This 
technique reduced the variability (in terms of IPC) between 
runs from around 5% to 1 %. 

File Interface: Tejas can also read instruction execution 
traces from files. This mechanism is platform independent and 
enables fully deterministic simulations. While working with 
realistic workloads such as the Apache web server benchmark, 
the trace files can become extremely large. We use the GZip 
compressor to compress the trace files, not only because of a 
possible space crunch but also because of the performance 
degradation due to the increased amount of disk I/O. We 
achieved a compression ratio of 70-80% for all our workloads. 
We then use the GZIP file reader that is a part of Java 7 to 
incrementally decompress the trace file on-the-fly and provide 
the traces to the timing simulator. In the case of the GPU 
traces [15] , we achieve a further reduction in the size of the 
trace files using a simple observation that all the blocks of a 
CUDA kernel contain the same set of instructions. Hence, we 
store the information regarding these instructions separately 
in a hash file. Next, we generate a set of new binary trace 
files containing only the instruction pointers (in the hash file), 
branch outcomes and memory addresses. This lead to an 
additional lO-fold decrease in the size of the trace files for 
all of the benchmarks in the Rodinia benchmark suite. 

V. TRANSL ATION MODULE 

We translate all our simulated ISAs into a RISC ISA called 
Virtual Instruction Set Architecture, or VISA. This is done 
to provide a homogeneous timing simulation interface (across 
ISAs). It is fairly flexible, and has sufficient information to 
perform a timing simulation. This is a standard technique. 
Other cycle accurate architecture simulators such as GemS [5], 
SESC [3],  and PTLsim [16] also adopt a similar approach. 
We acknowledge that this translation from the native ISA to 
VISA can be a source of inaccuracy. However, our experiments 
with the x86 ISA show acceptable simulation error statistics 
(11.45%, see Section VII). We believe that simpler native IS As 
such as ARM or MIPS, which are more closer to VISA, will 
display an even lower translation-induced error. We employ 
caching to improve the speed of translation. The translation 
cache contains assembly strings of recently translated target 
instructions, and their mappings to VISA counterpart(s). This 
technique helped leverage the benefits of temporal/spatial 
locality and realize a 3.4x improvement in performance .. 

A CISC instruction set such as x86 contains hundreds of 
instructions. Some of these instructions are very rarely used. 
We ignore such instructions. This approach ensures that VISA 
does not get bloated with ISA specific details, and is still able 
to represent a majority of the operations performed. We have 
noted that the dynamic coverage of the translator is > 99% for 
a large number of benchmarks. We are aware of the fact that 
the translation of CISC instructions (e.g., x86) to VISA based 
RISC instructions can be a source of error. We borrow ideas 
from the translation engine of the PTLsim simulator [16] that 
has been rigorously validated against native x86 hardware. 
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Fig. 2: Pipelines in Tejas 

A. Static Analysis of the Benchmark 

The communication of instructions between the emulator(s) 
and the simulator can be a bottleneck for performance. We 
chose to reduce the amount of the information communicated, 
without compromising on correctness, by doing some initial 
pre-processing. The benchmark executable undergoes a static 
analysis phase, where a map of each basic block to a VISA 
basic block is constructed (with place-holders for memory 
addresses and branch outcomes). During run-time, we need 
to only transfer the program counter (PC) of each executed 
instruction. The IP is then used to look up the static map and 
obtain the micro-ops to be simulated. Additionally, memory 
addresses in the case of memory operations, and branch 
outcomes in the case of branches, are transferred from the 
emulator. These are used to fill the place-holders. The rest 
of the details (e.g., opcode, register operands) can be inferred 
from the constructed map. 

VI. MICRO-ARCHITECTURAL SIMUL ATION 

A. Semi Event Driven Model 

One of the popular ways to simulate hardware is to adopt an 
iterative style, as done in SimpleScalar [2] . In every iteration, 
each structure is advanced through one clock cycle. Although 
highly simple, often we end up simulating structures that are 
idle. The alternative is to follow a discrete event model as the 
one used by SESC [3].  A list of events is maintained in an 
event queue. In each cycle, we dequeue the events scheduled 
for that cycle and process them, which may in turn generate 
more events. An event queue is essentially a priority queue. 
Operations on a priority queue are computationally expensive, 
even for moderately sized queues. 

To capture the best of both worlds we adopt a semi­
event driven modeL For activities that occur regularly with 
predictable latencies we use an iterative approach. An example 
is decoding, which happens every cycle unless there is a stalL 
For activities that occur irregularly with unpredictable latencies 
(e.g, executing a load/store) an event-driven approach is used. 

B. Pipelines 

A multi-issue inorder pipeline and a complex out-of­
order(OoO) pipeline have been implemented in Tejas. The 
multi-issue inorder pipeline shown in Figure 2(a) is based on 
the design used by the Intel Pentium processor [17] . The out­
of-order pipeline implementation (see Figure 2(c» simulates 
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aggressive speculation. It simulates detailed wakeup, replay, 
select, and multi-level bypass mechanisms to allow ilmnediate 
resolution of data dependencies. Additionally, we simulate a 
register-allocation table (RAT) based renamer, a reorder buffer, 
and a physical register file. The sizes of each unit including 
the issue, decode, and retire widths are configurable through 
an XML file. Similarly, the number of functional units of 
each type, their latencies and reciprocals of throughput can 
be specified. 

The pipeline stages are simulated in reverse order to ensure 
correctness: commit/write-back first and fetch last. The reason 
for this is that at time t, we want the ith stage to work on the 
output that the (i - 1) th stage generated at time t - L If we 
simulate stages in the forward order, the ith stage will work 
on the output that the (i - 1 )th stage generated at time t. 

We observed that there are many corner cases that can arise 
while simulating an aggressive 000 pipeline. Let us consider 
one such example. A dependent instruction j may be in the 
rename stage when i completes (see Figure 2). Since i has not 
yet reached the write-back stage, j cannot get its operand from 
the register file. And since j is not in the instruction window, 
it misses the wakeup signaL j is now indefinitely stuck in the 
pipeline. To handle such cases in Tejas, we send two wakeup 
signals to the instruction window in successive cycles. This 
ensures j gets its operands and makes progress. Our GPU 
pipeline is described in detail in the paper by Malhotra et 
aL [15]. Our pipeline is modeled according to the designs used 
in NVIDIA's Tesla, Fermi and Kepler GPUs. 

C Branch Predictor 

The emulator sends the traces of only those instructions 
that were on the correct control path, and merely informs 
the simulator if a branch was taken or not taken. When 
the simulator receives a branch, it performs the prediction. 
The predicted outcome and the outcome provided by the 
emulator are subsequently compared. A mismatch indicates a 
misprediction, which is simulated by stalling the pipeline for a 
pre-defined (configurable) number of cycles as is done in other 
simulators (see SESC [3]). A wide array of branch predictors 
are implemented in Tejas: Always Taken, Always Not Taken, 
Bimodal, GAg, GAp, PAg, PAp, GShare, TAGE [18] and 
tournament predictors. 

D. Cache Hierarchy 

Figure 3 shows the high level working of a cache, which 
is the basic building block in Tejas's memory hierarchy. The 
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Fig. 3: High level working of a cache (simplified) 

cache model is highly detailed, allowing specification of size, 
latency, associativity, block size, write mode, port type, port 
occupancy, number of ports and the MSHR (Miss Status 
Holding Register) size. A cache can be private to a core, 
or shared among a set of cores. Non-uniform cache access 
(NUCA) is also supported (see Section VI-F). 

A structure critical to both simulator accuracy and perfor­
mance is the MSHR, which has not received a lot of attention 
in competing simulators. It contains those cache requests that 
encountered a miss and are awaiting fulfillment. The MSHR 
is a fixed size structure; its filling up results in back pressure 
- requiring the upper cache levels/pipeline to back off from 
sending further requests. The MSHR is a highly used structure, 
and implementing the MSHR as a naive array results in serious 
performance issues. Every time a response comes from the 
lower levels, a sequential search (O(n)) is required to find 
all requests corresponding to the received cache line. These 
requests are then serviced, and removed from the MSHR. 
Removing an entry from an array requires re-arranging the 
elements, which is again expensive (O(n)). Experimentation 
with different data structures and algorithms revealed that 
implementing the MSHR using a linked list of linked lists 
is the best alternative. 

Each second level list consists of requests for the same 
block. When a miss for address x occurs, we first sequentially 
search the first level list for a list corresponding to x. If found, 
we append the request to this list; else, we create a new list and 
append it to the first level list. This sequential search is not that 
expensive because of the two-level scheme - the length of the 
first level list is typically not very long. When the response 
(address x) from a lower level arrives, we again perform a 
sequential search at the first level, find the list of requests 
corresponding to x, and service them. This linked list is then 
purged (0(1)). 

E. Coherence Protocol 

We implemented directory based cache coherence in Tejas. 
A useful feature is the flexibility of specifying coherence at 
any level (Ll or beyond). Tejas implements the MESI protocol 
with additional extensions. However, the simple "text-book" 
4-state protocol does not capture the entire complexity of 
a real coherence protocol. A coherence protocol has a very 
important temporal component - messages take time to reach 
the destination over the NoC. During this transit, the different 
components are not consistent with each other. Effectively, it 
cannot be clearly ascertained, which of the 4 states the system 
is in. Hence practical coherence protocols have 100+ states. 
Diligently handling every possible scenario will result in a 
massive state explosion. The code will become very unwieldy, 
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and implementing an industry strength protocol is not the goal 
of an academic simulator. 

Hence, in Tejas, we adapted our protocol to handle only 
those scenarios that occur with a reasonably high probability. 
If any of the unhandled scenarios transpire, we perform a 
corrective operation - gracefully move the system to a legal 
state and continue. We audit the frequency of such corrective 
operations - they were found to occur only around once every 
105 data cache accesses. Table II lists some scenarios that 
require a corrective operation. 

TABLE II: Example scenarios requiring corrective operations 

Case Sequence of Events 

write miss at Cl, and C2 is a D I R � C2 reaches before D I R � 
sharer C2 
simultaneous write hit at Cl and say, C2 reaches DIR first: DIR:c2[M], 
C2 DIR:cdI]; Cl � DIR reaches 

DIR and simultaneously evicts line, DI R:cdI]; Cl fNV DIR, Cl Cl -------+ 
evict the same line at Cl DIR�Cl 
C·i: coherent caches, DIR: directory 
INV invalidate msg, FWD: forward line msg, WH: inform write hit 
DI R:Ci [X]: DIR updates state(MESl) of Ci to X 

Consider the following sequence of events. Cache c evicts 
address X, and informs the directory. It then receives a read 
to the same address, and requests the directory for X, The 
evict and ReadMiss messages may be reordered by the NoC, 
possibly resulting in the ReadMiss request reaching first. The 
directory, however, believes that c is a sharer for address 
X at this point. To avoid such inconsistent states, we adopt 
a technique called line locking. Whenever a coherent cache 
performs a write (write-hit) or an eviction, it locks the line 
and informs the directory. As long as the line is locked, the 
line may not be evicted. The directory updates its state and 
sends an acknowledgment to the cache. The cache on receipt 
of the ACK updates its state and unlocks the line. This reduces 
the frequency of inconsistent states, resulting in a significant 
decrease in the number of corrective operations performed, 
thus improving the simulation accuracy. 

F Non-Uniform Cache Architectures (NUCA) and DRAM 

Tejas implements NUCA caches, where we decouple the 
physical organization of a cache from its logical organization. 
We provide both static NUCA and dynamic NUCA. The 
NUCA implementation in Tejas is augmented with a victim 
buffer. It is essentially a buffer associated with each bank 
containing the block addresses of the last k lines evicted from 
the bank and placed in another bank. This is required to handle 
a tricky scenario in D-NUCA called the two-copy problem 
- consider two banks b1 and b2. A request comes to b2 for 
address x, which is absent in b2 and present in b1. b2 forwards 
the request to b1. Before the request reaches b1, the latter evicts 
line x and sends it to b2. When the request reaches b1, it 
suffers a miss, and the request is sent to the lower levels of 
the memory hierarchy. The request is serviced and the line is 
placed in b1. Now, address x is wrongly present in both banks. 
A victim buffer helps us avoid this by enabling us to place a 
line from the lower level in a bank, only if it does not have a 
corresponding entry in the victim buffer. This was necessary 
to ensure correctness because this situation was fairly common 
in our DNUCA implementation. 



At the moment, we are developing a detailed DRAM model 
(DDR3 and DDR4). Additionally, we are also working on 
simulating hardware transactional memory. 

G. Network-on-Chip (NoC) 

The NoC implementation is generic - it can connect com­
ponents such as cores, cache banks, directories and memory 
controllers. Every component of Tejas has a network interface 
attribute. This is essentially the component's point of contact 
with the rest of the system. If A wants to send a message 
to B, it simply executes B.getPortO.put(msg). If A and B 
have the same network interface (assume a private Ll wishes 
to conununicate with its write buffer), then the message is 
simply transferred to the receiver inunediately. If A and B 
have different network interfaces then the message is sent over 
the network. 

Our NoC implementation is fairly rich. We support packet 
switch traffic in both cut-through and worm-hole routing 
modes. We support a variety of topologies: bus, ring, mesh, 
torus, fat tree, omega and butterfly. Tejas supports both static 
(X-Y, West-First, North-Last, Negative-First) and adaptive 
routing schemes. We simulate complex multi-port routers with 
support for virtual channels, bypassing, and lookahead routing. 
Tejas is the first public domain simulator to also support 
optical networks. We support SWMR (single writer-multi 
reader) and MWSR (multi writer-single reader) networks with 
support for arbitration and optical barriers. 

H. Power and Temperature Modeling 

Tejas uses the McPAT [19] power model. We have an 
additional power pack that takes the default XML based 
configuration file as input, creates a configuration file for 
McPAT, runs McPAT, and creates a new Tejas configuration 
file that has the energy per access for each structure. At the end 
of the simulation we report the power consumption of all the 
micro-architectural structures. We can additionally interface 
with the Orion2 [20] power model for NoCs, and also generate 
an energy consumption trace that can be provided as an input 
to a temperature simulator such as HotSpot. McPAT [19] and 
Orion2 [20] have been rigorously validated by the respective 
authors. 

I. Relaxed Memory Consistency Models 

Tejas supports sequential consistency as well as weak con­
sistency models such as RC and TSO. For simulating relaxed 
memory models, we need to have support for memory fence 
instructions, and we need to incorporate the concept of read 
and write completion in the memory system. To simulate the 
memory fence instruction and simulate memory access comple­
tion, we need the memory system to send an acknowledgement 
after a memory access (load/store/sync. operation) is globally 
visible. Read operations are synchronous by nature. Write 
operations, however, require explicit acknowledgments to be 
sent. We thus need to keep track of the state of the memory 
system. Only when all the changes pertaining to a store request 
are reflected in the memory system and subsequent loads are 
guaranteed to get the value written by the store (or a newer 
value), we signal the completion of the request. This required 
changes in the MSHR and the directory. In specific, we signal 
the completion of a store, when we get exclusive access to the 
line in the directory. 
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1. Memory Optimizations 

One of the main contributors towards Tejas's performance 
is its superior cache locality. As elaborated in the high-level 
architecture (Section II), there are four main phases in the 
simulation process - emulation, communication, translation 
and micro-architecture simulation. The straight-forward way 
of implementing this would be to operate at the granularity of a 
single instruction - emulate a single instruction, communicate 
the information packets, translate it to a set of VISA instruc­
tions, and simulate these. Such an approach, though simple, 
suffers from poor locality, in both the code and data segments. 
Instead, we work at a higher granularity of 50 packets. This 
results in considerable time spent executing one phase before 
moving to the next. The improved cache locality results in 
improved simulation speed. Increasing the granularity further 
proved counter-productive as the buffering structures between 
the phases became prohibitively large. 

One of the biggest advantages of Java is dynamic mem­
ory management. It makes prograrmning very easy because 
the user does not have to manually free memory segments. 
However, the garbage collector has its limits. For extremely 
frequently instantiated data structures such as the Instruction 
object or the Event object, dynamic memory management 
is associated with very large performance overheads. Hence, 
we decided to use pooling (object reuse) for the Instruc­
tion objects. Instruction objects are created in the translator 
(right after translation), and are destroyed upon retirement. 
Since these points are very clearly defined in the code of 
our simulator, it was very easy to fetch and return objects 
to a pool of instructions. We further optimize the pool by 
making its size variable - we start with a reasonably small 
sized pool (function of the number of static instructions in 
the executable), and grow it on demand. This provides an 
additional improvement in performance. A related optimization 
is with respect to operands - an object representing every 
legally possible operand is created at the start of simulation. 
References to these are used during the simulation, instead of 
creating them anew. They do not have any dynamic component, 
allowing multiple instruction objects to reference the same 
operand object. 

We did not use pooling for Event objects because this 
would unnecessarily complicate the code. Event objects are 
used throughout the simulator's code and there is no clear 
point at which they stop getting used. We thus employ an 
alternate strategy. We avoid creating multiple instances of the 
Event class by reusing the same object as much as possible. 
The Event class is highly configurable and can represent many 
kinds of sub-events, so that the same event object can go 
through the NoC to the directory, and then to the owner of the 
cache line. We further reduce the frequency of the invocation 
of the garbage collector by hand coding some of the frequently 
used data structures such as the linked list. The implementation 
of the linked list in java.util. LinkedList allocates a heavy con­
tainer object during each addition operation, and encapsulates 
the given data in it. This increases the chances of the invocation 
of the garbage collector. Instead, we have a next pointer with 
the parent class of every simulation element that can be a part 
of a linked list. We thus do not require an encapsulating object. 
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Fig. 4: Validation : SPEC CPU2006 suite 

VII. EVALUATION 

A. Validation against Native Hardware 

In this section, we discuss the validation of Tejas against 
a PowerEdge R620 Dell server (for details see Table III). We 
used a suite of 17 serial workloads from the SPEC CPU2006 
benchmarks and a suite of 11 parallel workloads from the 
SPLASH-2 benchmarks. First, with the help of the Linux "perf" 
command, we recorded the number of cycles taken to execute 
each of the benchmarks on the target machine (averaged 
across 10 runs). Subsequently, Tejas was configured to mimic 
the target machine as closely as possible (see Table IV for 
details). The simulated time reported by Tejas was compared 
against the results obtained from the native hardware, as per 
the standard procedure adopted by other simulators (see the 
validation results of Gem5 [21]). 

TABLE III: Details of the reference hardware 

Parameter Value l"drameter Value 
Microllrchitecture Intel Sandybridge Number of cores 12 

Mllin Memory 32 0B Memory Type ECC DDR3 
L 1 i-cache and d-cache 32 KB L2 cache 256 KB 

L3 Cliche 15MB Frequen<..)' 20Hz 
Hyper-thr�dingIDVFS Disllbled Reorder Buffer 168 micro-ops 

Load Buffer Size 64 Store Buffer Size 64 
operating System untu 12.10 Linu;\;'3.5.0-36-generic, 64-bit 

Sequential benchmarks validation: Figure 4 shows the 
validation error for serial workloads. The average absolute 
error (in execution time) is 11.45%. 10 out of 17 benchmarks 
have an error less than 10%. Only 4 benchmarks have errors 
in the 20-30% range (sjeng, astar, mel, and gee) . 

Parallel benchmarks Validation: Figure 5 shows the 
validation error for parallel workloads. The average absolute 
error was observed to be 18.77%. In this case, the average error 
is greater primarily because of the jitter introduced by variable 
reordering of the application threads by the OS scheduler. 
Secondly, there are hardware events such as I/O events that 
induce jitter, and lastly we are not privy to all the details 
of the operation of the cache coherence protocols in Intel 
systems. Only 3 benchmarks had errors more than 25% namely 
radiosity, radix and water-spatial. For most of the benchmarks, 
the error ranges from 10 to 17%. 

Comparison with other Simulators: Tejas is more 
accurate for both serial and parallel benchmarks as compared 
to most of the other widely used architecture simulators 
(for which published results for x86 hardware are available). 
MARSS [22] is a cycle-accurate simulator based on PTLsim. 
It is a tool built on QEMU and provides fast full system 
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TABLE IV: Simulation parameters 

Parameter Value II Parameter I 
Pipeline 

Retire Width 4 Integer RF (phy) 
Issue Width 6 Float RF (phy) 

ROB size 168 Predictor 
IW size 54 Bmispred penalty 

LSQ size 64 
iTLB 128 entries dTLB 

Integer ALU 3 units lat = I cycle 
Integer Mul I unit lat = 3 cycles 
Integer Div I unit lat = 21 cycles 
Float ALU 1 units lat = 3 cycles 
Float Mul I unit lat = 5 cycles 
Float Div I unit lat = 24 cycles 

RoT: reciprocal of throughput 

Private Ll i-cache, d-cache 

Write-mode Write-Through Block size 
Associativity 8 Size 

Latency 3 cycles 

Private Unified L2 cache 

Write-mode Write-Back Block size 
Associativity 8 Size 

Latency 6 cycles 

Shared L3 cache 

Write-mode Write-back Block size 
Associativity 8 Size 

Latency 29 cycles 

Mam Memory Latency II 
NOC and Traffic 

Bus 
32 bytes 

3.06 

25.94 

30.03 

Value 

160 
144 

TAGE [18] 
8 cycles 

128 entries 
RoT = I 
RoT = I 

RoT = 12 
RoT = I 
RoT = I 

RoT = 12 

64 
32 kB 

64 
256 kB 

64 
15 MB 

Fig. 5: Validation : SPLASH-2 suite 

simulation. MARSS has been validated against a x86 target 
machine with the Intel Xeon E5620 processor. For the SPEC 
CPU2006 benchmark suite, it has errors ranging from -59.2% 
to 50%, with an average absolute error of 23.46%. 

Sniper [4] sacrifices cycle accuracy in favor of simula­
tion speed by employing sampled simulation. It has been 
validated against a 4-socket Intel Xeon X7460 Dunnington 
shared memory machine. An average absolute error of 25% 
has been reported for the SPLASH-2 benchmark suite (we 
report 18.77%). FastMP [8] simulates a subset of cores in 
detail and uses this information to approximate memory traffic 
for other cores. FastMP has been validated against a real 
x86 machine using the SPEC CPU2006 benchmark suite. It 
suffers from an average error of 9.56% but for some of the 
benchmarks the error is as high as 40% (our maximum error 
is roughly 27%). To the best of our knowledge other popular 
simulators such as SESe [3] and MacSim [23] have not been 
validated. Multi2sim, which is a heterogeneous simulator, has 
been validated for the GPU framework but its CPU simulation 
framework has not been validated and published (to the best 
of our knowledge). Our GPU pipeline has been validated by 
Malhotra et al. [15] (error < 7.67%). Gem5 has been validated 
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against an ARM Cortex-Al 5 processor with a mean error of 
13% for SPEC CPU2006 benchmarks and mean error of 17% 
for dual core simulations of parallel benchmarks. Note that 
Cortex-A15 has a much simpler pipeline than Intel Sandy­
bridge, yet our error numbers are better for serial benchmarks. 

B. Performance 

Next, we compare the performance of Tejas with two 
popularly used cycle accurate simulators: Gem5 [5] and 
Multi2Sim [6] . We run all our experiments on a Dell server 
(see Table III). Figure 6 shows the relative speeds of simulation 
(including emulation, trace transfer and translation) in terms 
of kilo-instructions simulated per second (KIPS) for serial 
benchmarks (our Multi2Sim simulations did not complete for 
some benchmarks). Tejas outperforms Gem5 and Multi2Sim, 
with an average speed of around 175 KIPS. It is on an 
average 25% faster than Multi2Sim and 220% faster than 
Gem5. Figure 7 shows the simulation speeds of different 
benchmarks in the Splash2 suite. The average simulation speed 
of Tejas is around 140 KIPS. We were unable to simulate 
the Splash2 suite in Multi2Sim with acceptable validation 
numbers. The Gem5 simulator simulates parallel workloads 
only in the full system mode, which would not make for a 
fair comparison against Tejas. Both Tejas and Multi2Sim can 
simulate parallel applications without simulating the OS. In 
any case, the simulation speed of Gem5 is 3-4 KIPS for parallel 
applications, and thus Tejas is two orders of magnitude faster. 
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VIII. CONCLUSION 

In this paper, we have presented the design of the Tejas 
architectural simulator, which has been designed to be platform 
independent. We achieve this by decoupling the instruction 
emulation and the timing simulation. We can use a wide 
variety of platform dependent emulators that can provide us 
execution traces from many different platforms with different 
system software and different ISAs. The timing engine has 
been written in Java, making it platform independent. Tejas 
supports most of the advanced features provided by competing 
cycle accurate simulators and additionally outperforms other 
simulators in its class both in terms of performance and 
accuracy vis-a-vis native hardware. 

REF ERENCES 

[l] E. K. Ardestani and J. Renau, "Esesc: A fast multicore simulator using 
time-based sampling," in HPC A, 2013. 

[2] T. Austin, E. Larson, and D. Ernst, "Simplescalar: an infrastructure for 
computer system modeling," Computer, 2002. 

[3] SESe: SuperESCalar Simulator. [Online]. Available: http://iacoma.cs. 
uiuc.eduJ�paulsack/sescdoc/ 

[4] T. Carlson, W. Heirman, and L. Eeckhout, "Sniper: Exploring the level 
of abstraction for scalable and accurate parallel multi-core simulation," 
in SC, 2011. 

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, 
J. Hestness. D. R. Hower, T. Krishna, S. Sardashti et al., "The gemS 
simulator," ACM SIGARCH Computer Architecture News, 2011. 

[6] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. R. Kaeli, "Multi2sim: a 
simulation framework for cpu-gpu computing," in PACT, 2012. 

[7] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, 
J. Eastep, and A. Agarwal, "Graphite: A distributed parallel simulator 
for multicores," in HPC A, 2010. 

[8] S. Kanaujia, I. E. Papazian, J. Chamberlain, and J. Baxter, "Fastmp: A 
multi-core simulation methodology," in MOBS, 2006. 

[9] Tejas: A java based versatile micro-architectural simulator. 
[Online]. Available: http://www.cse.iitd.ac.in/%7Esrsarangi/files/papers/ 
patmospaper.pdf 

[10] D. Sanchez and C. Kozyrakis, "Zsim: fast and accurate microarchitec­
tural simulation of thousand-core systems," in ISC A, 2013. 

[11] G. Malhotra, P. Aggarwal, A. Sagar, and S. R. Sarangi, "Partejas: A 
parallel simulator for multicore processors," in ISPASS (Poster), 2014. 

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, 
S. Wallace, V. J. Reddi, and K. Hazelwood, "Pin: building customized 
program analysis tools with dynamic instrumentation," ACM Sigplan 
Notices, 2005. 

[13] F. Bellard, "Qemu, a fast and portable dynamic translator." in USENIX 
Annual Technical Coriference, FREENIX Track, 2005. 

[14] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, "Ocelot: A 
dynamic optimization framework for bulle-synchronous applications in 
heterogeneous systems," in PACT , 2010. 

[15] G. Malhotra, S. Goel, and S. R. Sarangi, "Gputejas: A parallel simulator 
for gpu architectures," HiPC, 2014. 

[16] M. Yourst, "Ptlsim: A cycle accurate full system x86-64 microarchitec­
tural simulator," in ISPASS, 2007. 

[17] D. Alpert and D. Avnon, "Architecture of the pentium microprocessor," 
Micro, 1993. 

[18] A. Seznec and P. Michaud, "A case for (partially) tagged geometric 
history length branch prediction," JILP, 2006. 

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and 
N. P. Jouppi, "Mcpat: an integrated power, area, and timing modeling 
framework for multicore and manycore architectures," in MICRO, 2009. 

[20] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, "Orion 2.0: a fast 
and accurate noc power and area model for early-stage design space 
exploration," in DATE, 2009. 

[21] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D. 
Emmons, M. Hayenga, and N. Paver, "Sources of error in full-system 
simulation," in ISPASS, 2014. 

[22] A. Patel, F. Afram, S. Chen, and K. Ghose, "Marss: a full system 
simulator for multi core x86 cpus," in DAC, 201l. 

[23] H. Kim, J. Lee, N. Lakshminarayana, J. Lim, and T. Pho, "Macsim: Sim­
ulator for heterogeneous architecture," Georgia Institute of Technology, 
2012. 


