
Tejas: A Java based Versatile Micro-architectural

Simulator

Smruti R. Sarangi, Rajshekar Kalayappan, Prathmesh Kallurkar, Seep Goel, Eldhose Peter
Department of Computer Science, Indian Institute of Technology, New Delhi, India
E-mail: {srsarangi.rajshekark.prathmesh.kallurkar.mcsI32582.eldhose}@cse.iitd.ac.in

Abstract-In this paper, we present the design of a new
Java based, cycle-accurate, heterogeneous architectural simulator,
Tejas. Tejas is a trace driven simulator, which is platform­
independent. It can simulate binaries in any ISA and correspond­
ing to virtually any operating system. It can itself run on virtually
any machine. It is one of the fastest cycle accurate simulators
available in academia. This is achieved through employing opti­
mized data structures, improving the simulator's cache locality,
and reducing the amount of wasteful work done. Tejas offers a
rich library of architectural features that are modular and highly
configurable. Tejas has been validated against real hardware (Dell
PowerEdge R620 server) and has been shown to be more accurate
than some of the most popular architectural simulators.

I. INTRODUCTION

An architecture simulator is arguably the most important
tool in computer architecture education, design, and research.
It is used to teach basic concepts, prototype new designs, and
estimate performance, temperature, and power. As a natural
consequence of such requirements, many architectural simu­
lators [1-5] have been developed and distributed under open
source licenses over the last two decades. Most research groups
use and extend them to evaluate their proposals. Research
in the design of architectural simulators has mainly focused
on incorporating novel features [6] , parallelization [4, 7] , and
speed enhancing techniques [4, 7, 8] by sacrificing on cycle
accurate guarantees. However, the problem of having a flexible
and platform independent simulation framework that can run
over the cloud, and can incorporate instruction emulators
through a standardized interface has not received a lot of
attention. We solve this problem in this paper by proposing
the design of Tejas, which has been released under an open
source Apache 2 license.

An architectural simulator consists of an instruction emula­
tor that executes the workload, and a timing simulation engine
that simulates the execution of the workload on a hypothetical
machine. In Tejas we have decoupled these modules. This
was done because instruction emulators are typically platform
dependent, or can often be proprietary and make their services
available over the network. The simulation engine, however,
need not be tied to any platform. All other popular open
source simulators (to the best of our knowledge) are written
in C/C++, which makes them dependent on a platform to a
large extent. In Tejas, the simulation engine is made platform
independent by being implemented in Java. It can interact
with many different instruction emulators that are possibly
executing on remote machines through standardized interfaces.
We have tested Tejas on Linux, Windows and OSX platforms,
and present the results for the Linux platform in this paper.
The transfer of the execution trace from the emulator to the

9781467394192/15/$31.00 ©2015 IEEE 47

simulator can be either online (the current distribution of Tejas
supports shared memory, memory mapped files and sockets)
or offline through trace files. Note that with trace files, the
platform specific phase of trace collection needs to be done
only once. The simulation of the trace, whose outcome is
agnostic to the underlying platform, can then be done any
number of times on any kind of machine.

Apart from being portable, Tejas is competitive with
other simulators in terms of functionality. It simulates non­
uniform caches, out-of-order pipelines, complex on-chip net­
works (NoCs), relaxed memory models, and CUDA based
GPGPUs. In terms of speed, it is faster than several popularly
used cycle accurate simulators, and has additionally been
thoroughly validated against native hardware.

Our contributions can be divided into two categories. The
first category of techniques are focused on creating an efficient
transfer mechanism between the emulators and the timing
simulator, and on leveraging the features of Java to the utmost
extent. The second category of optimizations are general tech­
niques that can be used with all high performance architecture
simulators. They focus on methods to efficiently and accurately
simulate out-of-order pipelines, memory hierarchies, imple­
ment coherence protocols with relaxed memory models, and
simulate complex NoCs. We evaluate the cumulative effect of
all our proposed techniques in Section VII for both serial and
parallel workloads. We compare our results with two popular
cycle accurate simulators: GemS and Multi2Sim. Tejas is on
an average 25% faster than Multi2Sim and 220% faster than
GemS (for serial workloads). The error in estimating execution
time for serial and parallel workloads is 11.45 and 18.77%
respectively, which is mostly better than previously published
results. Tejas provides comparable architectural simulation
capabilities with a fairly small code base - it contains 32k
lines of code, which is significantly lesser than other competing
simulators (Sniper: 76k lines, Multi2Sim: 108k lines, GemS:
170k lines).

Readers can look at the full version of the paper [9] with
the attached appendices for sample code in our custom ISA,
VISA, details of the translation process, and simulation results
on the Windows and OSX platforms.

A. Related Work and Motivation

Some of the most popular cycle accurate architecture
simulators are SimpleScalar [2] , Sesc [3], GemS [5] , and
Multi2Sim [6] . They typically have built-in emulators for
specific ISAs, which can emulate the execution of binaries.
Typically both the emulator and timing simulator are a part of
the same software package. Multi2Sim is the closest to Tejas

in terms of functionality. Like Tejas it supports the simulation
of heterogeneous systems with CPUs and GPUs. Similar to
Tejas, Multi2Sim and GemS can also simulate the full software
stack inclusive of the OS and hypervisor. Unlike, Tejas none
of the popularly used simulators have platform independence
as a major design goal.

.
The�e is another line of work that focuses on parallelizing

sImulatlOn such as the papers on Sniper [4] , Graphite [7] , and
ZSim [10] . Simulators such as Sniper [4] and ESesc [1] also
incorporate novel techniques such as sampled simulation or
analytical modeling, which allow them to skip a large number
of instructions because their behavior is predictable. Both these
techniques are orthogonal to our approaches. Tejas can be
parallelized (see [11]), and can also be extended to incorporate
sampled simulation.

Motivation: We believe that platform independence is an
important goal to pursue. The first reason is that most users
typically struggle with building and running a simulator on
their systems. This is primarily because of the dependence
on libraries with often antiquated versions, and because of
discrepancies between compiler optimizations and OS libraries
(such as stack randomization on Ubuntu platforms). Second is
the need to make the simulator cloud-compliant. The typical
usage of an architectural simulator is to perform design space
explorations. This involves a massive number of mutually
independent simulation runs, an ideal workload for a cloud
setup. However, clouds are usually made up of heterogeneous
platforms (ISA, OS, libraries). The file mode of Tejas provides
the

.
necessary insulation from all platform-specific idiosyn­

crasIes.

Additionally Java is known for its superior prograrmning
constructs, support for garbage collection, type safety, and ease
of debugging. Skeptics might argue that Java has traditionally
been associated with lower performance. To debunk this myth
we considered three of the most commonly used data struc­
tures in our simulator: priority queue, circular queue, and set
associative cache. We implemented them in both C++ (g++
4.7.2, optimization level 3, standard template library, libstdc++
6.0) and Java (JDK 7) and turned on all the optimizations.
We executed a workload containing a billion operations on a
2.53 GHz Intel Nehalem based system for all the three data
structures. Java was found to be 6.5%, -4.9% and 23% faster
than C++ for the priority queue, circular queue and cache
structures respectively. The gain is primarily due to efficient
just-in-time compilation features of the JVM.

II. ARCHITECTURE OF Tejas

The high level architecture of Tejas is shown in Figure 1.
The emulator emulates the execution of the program and
generates traces containing dynamic information such as in­
structions executed, load/store addresses, and branch outcomes
(taken/not-taken). The emulator is dependent on the platform.
The collected traces are then sent to the timing simulator,
which is written in Java. Subsequently, the timing simulator
translates the instructions into a custom instruction set called
VISA (see Section V). The simulated cores take the stream
of VISA instructions as an input and simulate the pipelines.
They send the memory accesses to memory elements through
the simulated on-chip network. At the end of the simulation,

48

Emulator

lDDDDD
00000

000000
000000
000000
� �
I Main Memory I

Fig. 1: High level architecture of Tejas
we report detailed statistics regarding the usage of each com­
ponent, the IPCs, the miss rates of different memory structures,
and the power consumption figures.

III. EMULATOR

Tejas is a trace driven simulator. The onus of correct
execution of the benchmark is on the emulator, and not Tejas.
Since many efficient open-source emulators are already avail­
able, our effort is limited to instrumenting these emulators for
feeding information to Tejas. Currently, we have instrumented
(1) Intel Pin [12] to emulate x86 binaries, (2) Qemu [13] to
emulate full systems including the OS and hypervisor, (3) GPU
Ocelot [14] to emulate CUDA-based GPGPU workloads and
(4) Jikes RVM to emulate Java bytecode. Note that PIN, Q�mu,
and Jikes have been released for a wide variety of platforms:
Windows, Linux, and MacOS X, and thus they are aligned
to

.
our goal of platform independence. The modular design of

Tejas allows the user to easily connect to different emulators,
corresponding to different target platforms.

The emulator executes the concerned benchmark, and sends
events of interest to the simulator. The primary events of
interest are instruction type, operands, load/store value, and
branch information. For parallel benchmarks, the emulator logs
the synchronization action for each thread. For full system
simulation, events such as system calls, interrupts, and process­
switches are noted. The events of interest are encoded using
a generic packet interface. The packet contains three fields
<ip, packet-type, value>, each encoded as a 64 bit
long value. The only exception is a packet describing the
assembly text of an instruction. For such packets, the value
field is a character array of 64 bytes (see Section IV).

IV. TRANSFER ENGINE

Emulated application threads run in parallel, and gigabytes
of trace data are generated per second. It is necessary to
send all of this data to the timing simulator using a high
throughput channel. Here again, Tejas's modular design allows
any communication mechanism to be employed. The current
distribution of Tejas provides support for: (1) shared memory,
(2) files, (3) pipes and (4) network sockets. We find shared
memory to be the best online mechanism. For an offline
solution, we can save the traces in files, and run the timing
simulation using the traces from the files.

To measure the peak throughput of each online mechanism,
we wrote a small compute intensive loop based benchmark. For

TABLE I: Comparison of IPC techniques

!PC Technique Speed (MB per second)

Sockets 9
Memory Mapped File 21

Shared Memory 24

this experiment, we measured the time taken to transfer 1 GB
of data from the emulator to the simulator on an Intel Core
i7 desktop (2.4 GHz processor, 4 GB RAM, Ubuntu Linux
12.04). Table I shows the results. We observe that sockets are
the slowest (10 MBps). This is because of the overhead of
system calls. However, they can be used to run the emulator
remotely. For high throughput, shared memory is the best
option (24 MBps). Communication with memory mapped files
is slower, because we need to synchronize data with the hard
disk, or the disk cache in main memory. Since we have a finite
number of buffers, we need a method for the consumer(Java
thread) to indicate to the producer(emulator) that it cannot
accept more packets for the time being. In the case of sockets,
we use a dedicated socket from the consumer to the producer,
and for shared memory or memory mapped files, we use shared
variables to indicate the status of the consumer.

Shared Memory: We will now briefly discuss the imple­
mentation of a shared memory based transfer engine for Linux
on x86 platforms. We use the shmget and shmat calls to get
and attach shared memory segments to the emulator processes.
We avoid using a separate shared memory segment for each
application thread because underlying operating systems typi­
cally place a limit on the number of shared memory segments
a process can use. Subsequently, we divide the segment into
n contiguous regions, one for each application thread. In each
region we have a header, and a circular queue. We fix the
size of each packet to 192 bytes, and allocate space for 50
packets in each circular queue. The header contains the status
of the thread, the number of outstanding packets in the queue
(count), and its head and tail pointers.

At the Java side, we use the Java Native Interface (JNI)
to access shared memory. It allows us to write code in C that
can be linked to the JVM in runtime. The second issue is
that of locking. We need to be able to get locks to update
the pointers to the circular queue, and the count variable.
We use a Peterson lock for this purpose. The implementation
of the lock is optimized for the Intel x86 TSO (total store
order) memory model. It uses a single fence instruction. JNI
uses Intel x86 string instructions to transfer large amounts
of data between memory locations in one go. Hence, we
homogenized the structure of a packet, at the cost of space.
Each packet contains three 64 byte fields. We use a single JNI
call, memcpy(void*, canst void*, size_t) to copy an entire
memory area into the address space of Java threads. Secondly,
note that Java is big-endian while Intel x86 is IittIe-endian.
While transferring values to the JVM, JNI routines seamlessly
convert little end ian values to big endian ones.

Compensation for OS Jitter: We observed that for
multi-threaded benchmarks, the simulated IPC across multiple
runs of the same configuration varied by around 5%. This
magnitude of noise is not acceptable in practical research
scenarios. The primary reason for the variability is that some
application threads were not getting scheduled by the OS as
much as others. In this case, their associated cores in the timing

49

simulator were remammg idle. To compensate for this, we
impose a constraint that allows a simulated core to remain
idle only if the corresponding application thread is waiting for
an external blocking event such as a lock to be released. This
technique reduced the variability (in terms of IPC) between
runs from around 5% to 1 %.

File Interface: Tejas can also read instruction execution
traces from files. This mechanism is platform independent and
enables fully deterministic simulations. While working with
realistic workloads such as the Apache web server benchmark,
the trace files can become extremely large. We use the GZip
compressor to compress the trace files, not only because of a
possible space crunch but also because of the performance
degradation due to the increased amount of disk I/O. We
achieved a compression ratio of 70-80% for all our workloads.
We then use the GZIP file reader that is a part of Java 7 to
incrementally decompress the trace file on-the-fly and provide
the traces to the timing simulator. In the case of the GPU
traces [15] , we achieve a further reduction in the size of the
trace files using a simple observation that all the blocks of a
CUDA kernel contain the same set of instructions. Hence, we
store the information regarding these instructions separately
in a hash file. Next, we generate a set of new binary trace
files containing only the instruction pointers (in the hash file),
branch outcomes and memory addresses. This lead to an
additional lO-fold decrease in the size of the trace files for
all of the benchmarks in the Rodinia benchmark suite.

V. TRANSL ATION MODULE

We translate all our simulated ISAs into a RISC ISA called
Virtual Instruction Set Architecture, or VISA. This is done
to provide a homogeneous timing simulation interface (across
ISAs). It is fairly flexible, and has sufficient information to
perform a timing simulation. This is a standard technique.
Other cycle accurate architecture simulators such as GemS [5],
SESC [3], and PTLsim [16] also adopt a similar approach.
We acknowledge that this translation from the native ISA to
VISA can be a source of inaccuracy. However, our experiments
with the x86 ISA show acceptable simulation error statistics
(11.45%, see Section VII). We believe that simpler native IS As
such as ARM or MIPS, which are more closer to VISA, will
display an even lower translation-induced error. We employ
caching to improve the speed of translation. The translation
cache contains assembly strings of recently translated target
instructions, and their mappings to VISA counterpart(s). This
technique helped leverage the benefits of temporal/spatial
locality and realize a 3.4x improvement in performance ..

A CISC instruction set such as x86 contains hundreds of
instructions. Some of these instructions are very rarely used.
We ignore such instructions. This approach ensures that VISA
does not get bloated with ISA specific details, and is still able
to represent a majority of the operations performed. We have
noted that the dynamic coverage of the translator is > 99% for
a large number of benchmarks. We are aware of the fact that
the translation of CISC instructions (e.g., x86) to VISA based
RISC instructions can be a source of error. We borrow ideas
from the translation engine of the PTLsim simulator [16] that
has been rigorously validated against native x86 hardware.

In����on Decode Rename IW Push
""'"' � � �

IF D RN IW
r- c--c c--c t---:

IF D RN IW

"

I-'- � � f--'-C
IF D RN IW -

creat
create entry
entry

Decooe inorder as long as :
• no branches
• no producer consumer dependency
• no write to same register in this cycle

create -I
entry

IforWstl -j

(a) Multi·issue In·order Pipeline (b) Execution Core

Select Exec�e Wak�up �:�f Commit
""'"' � �

5 EX W
r- c--c c--c

5 EX W

I-'- � �

5 EX W

f select ..,.

T Instruction Window (lWI
wakeup

Reorder Buffer (ROBI

Load Store Queue (LSQI

(c) Out·ol·order Pipeline

� ""'"'
WB CT

t---: r-

WB CT

f--'-C I-'-

WB CT
remove
entry r

�
emove
entry
or Id/st) If

r-

Fig. 2: Pipelines in Tejas

A. Static Analysis of the Benchmark

The communication of instructions between the emulator(s)
and the simulator can be a bottleneck for performance. We
chose to reduce the amount of the information communicated,
without compromising on correctness, by doing some initial
pre-processing. The benchmark executable undergoes a static
analysis phase, where a map of each basic block to a VISA
basic block is constructed (with place-holders for memory
addresses and branch outcomes). During run-time, we need
to only transfer the program counter (PC) of each executed
instruction. The IP is then used to look up the static map and
obtain the micro-ops to be simulated. Additionally, memory
addresses in the case of memory operations, and branch
outcomes in the case of branches, are transferred from the
emulator. These are used to fill the place-holders. The rest
of the details (e.g., opcode, register operands) can be inferred
from the constructed map.

VI. MICRO-ARCHITECTURAL SIMUL ATION

A. Semi Event Driven Model

One of the popular ways to simulate hardware is to adopt an
iterative style, as done in SimpleScalar [2] . In every iteration,
each structure is advanced through one clock cycle. Although
highly simple, often we end up simulating structures that are
idle. The alternative is to follow a discrete event model as the
one used by SESC [3]. A list of events is maintained in an
event queue. In each cycle, we dequeue the events scheduled
for that cycle and process them, which may in turn generate
more events. An event queue is essentially a priority queue.
Operations on a priority queue are computationally expensive,
even for moderately sized queues.

To capture the best of both worlds we adopt a semi­
event driven modeL For activities that occur regularly with
predictable latencies we use an iterative approach. An example
is decoding, which happens every cycle unless there is a stalL
For activities that occur irregularly with unpredictable latencies
(e.g, executing a load/store) an event-driven approach is used.

B. Pipelines

A multi-issue inorder pipeline and a complex out-of­
order(OoO) pipeline have been implemented in Tejas. The
multi-issue inorder pipeline shown in Figure 2(a) is based on
the design used by the Intel Pentium processor [17] . The out­
of-order pipeline implementation (see Figure 2(c» simulates

50

aggressive speculation. It simulates detailed wakeup, replay,
select, and multi-level bypass mechanisms to allow ilmnediate
resolution of data dependencies. Additionally, we simulate a
register-allocation table (RAT) based renamer, a reorder buffer,
and a physical register file. The sizes of each unit including
the issue, decode, and retire widths are configurable through
an XML file. Similarly, the number of functional units of
each type, their latencies and reciprocals of throughput can
be specified.

The pipeline stages are simulated in reverse order to ensure
correctness: commit/write-back first and fetch last. The reason
for this is that at time t, we want the ith stage to work on the
output that the (i - 1) th stage generated at time t - L If we
simulate stages in the forward order, the ith stage will work
on the output that the (i - 1)th stage generated at time t.

We observed that there are many corner cases that can arise
while simulating an aggressive 000 pipeline. Let us consider
one such example. A dependent instruction j may be in the
rename stage when i completes (see Figure 2). Since i has not
yet reached the write-back stage, j cannot get its operand from
the register file. And since j is not in the instruction window,
it misses the wakeup signaL j is now indefinitely stuck in the
pipeline. To handle such cases in Tejas, we send two wakeup
signals to the instruction window in successive cycles. This
ensures j gets its operands and makes progress. Our GPU
pipeline is described in detail in the paper by Malhotra et
aL [15]. Our pipeline is modeled according to the designs used
in NVIDIA's Tesla, Fermi and Kepler GPUs.

C Branch Predictor

The emulator sends the traces of only those instructions
that were on the correct control path, and merely informs
the simulator if a branch was taken or not taken. When
the simulator receives a branch, it performs the prediction.
The predicted outcome and the outcome provided by the
emulator are subsequently compared. A mismatch indicates a
misprediction, which is simulated by stalling the pipeline for a
pre-defined (configurable) number of cycles as is done in other
simulators (see SESC [3]). A wide array of branch predictors
are implemented in Tejas: Always Taken, Always Not Taken,
Bimodal, GAg, GAp, PAg, PAp, GShare, TAGE [18] and
tournament predictors.

D. Cache Hierarchy

Figure 3 shows the high level working of a cache, which
is the basic building block in Tejas's memory hierarchy. The

Lower Level Memory
*: if line is dirty, or if cache is coherent

Fig. 3: High level working of a cache (simplified)

cache model is highly detailed, allowing specification of size,
latency, associativity, block size, write mode, port type, port
occupancy, number of ports and the MSHR (Miss Status
Holding Register) size. A cache can be private to a core,
or shared among a set of cores. Non-uniform cache access
(NUCA) is also supported (see Section VI-F).

A structure critical to both simulator accuracy and perfor­
mance is the MSHR, which has not received a lot of attention
in competing simulators. It contains those cache requests that
encountered a miss and are awaiting fulfillment. The MSHR
is a fixed size structure; its filling up results in back pressure
- requiring the upper cache levels/pipeline to back off from
sending further requests. The MSHR is a highly used structure,
and implementing the MSHR as a naive array results in serious
performance issues. Every time a response comes from the
lower levels, a sequential search (O(n)) is required to find
all requests corresponding to the received cache line. These
requests are then serviced, and removed from the MSHR.
Removing an entry from an array requires re-arranging the
elements, which is again expensive (O(n)). Experimentation
with different data structures and algorithms revealed that
implementing the MSHR using a linked list of linked lists
is the best alternative.

Each second level list consists of requests for the same
block. When a miss for address x occurs, we first sequentially
search the first level list for a list corresponding to x. If found,
we append the request to this list; else, we create a new list and
append it to the first level list. This sequential search is not that
expensive because of the two-level scheme - the length of the
first level list is typically not very long. When the response
(address x) from a lower level arrives, we again perform a
sequential search at the first level, find the list of requests
corresponding to x, and service them. This linked list is then
purged (0(1)).

E. Coherence Protocol

We implemented directory based cache coherence in Tejas.
A useful feature is the flexibility of specifying coherence at
any level (Ll or beyond). Tejas implements the MESI protocol
with additional extensions. However, the simple "text-book"
4-state protocol does not capture the entire complexity of
a real coherence protocol. A coherence protocol has a very
important temporal component - messages take time to reach
the destination over the NoC. During this transit, the different
components are not consistent with each other. Effectively, it
cannot be clearly ascertained, which of the 4 states the system
is in. Hence practical coherence protocols have 100+ states.
Diligently handling every possible scenario will result in a
massive state explosion. The code will become very unwieldy,

51

and implementing an industry strength protocol is not the goal
of an academic simulator.

Hence, in Tejas, we adapted our protocol to handle only
those scenarios that occur with a reasonably high probability.
If any of the unhandled scenarios transpire, we perform a
corrective operation - gracefully move the system to a legal
state and continue. We audit the frequency of such corrective
operations - they were found to occur only around once every
105 data cache accesses. Table II lists some scenarios that
require a corrective operation.

TABLE II: Example scenarios requiring corrective operations

Case Sequence of Events

write miss at Cl, and C2 is a D I R � C2 reaches before D I R �
sharer C2
simultaneous write hit at Cl and say, C2 reaches DIR first: DIR:c2[M],
C2 DIR:cdI]; Cl � DIR reaches

DIR and simultaneously evicts line, DI R:cdI]; Cl fNV DIR, Cl Cl -------+
evict the same line at Cl DIR�Cl
C·i: coherent caches, DIR: directory
INV invalidate msg, FWD: forward line msg, WH: inform write hit
DI R:Ci [X]: DIR updates state(MESl) of Ci to X

Consider the following sequence of events. Cache c evicts
address X, and informs the directory. It then receives a read
to the same address, and requests the directory for X, The
evict and ReadMiss messages may be reordered by the NoC,
possibly resulting in the ReadMiss request reaching first. The
directory, however, believes that c is a sharer for address
X at this point. To avoid such inconsistent states, we adopt
a technique called line locking. Whenever a coherent cache
performs a write (write-hit) or an eviction, it locks the line
and informs the directory. As long as the line is locked, the
line may not be evicted. The directory updates its state and
sends an acknowledgment to the cache. The cache on receipt
of the ACK updates its state and unlocks the line. This reduces
the frequency of inconsistent states, resulting in a significant
decrease in the number of corrective operations performed,
thus improving the simulation accuracy.

F Non-Uniform Cache Architectures (NUCA) and DRAM

Tejas implements NUCA caches, where we decouple the
physical organization of a cache from its logical organization.
We provide both static NUCA and dynamic NUCA. The
NUCA implementation in Tejas is augmented with a victim
buffer. It is essentially a buffer associated with each bank
containing the block addresses of the last k lines evicted from
the bank and placed in another bank. This is required to handle
a tricky scenario in D-NUCA called the two-copy problem
- consider two banks b1 and b2. A request comes to b2 for
address x, which is absent in b2 and present in b1. b2 forwards
the request to b1. Before the request reaches b1, the latter evicts
line x and sends it to b2. When the request reaches b1, it
suffers a miss, and the request is sent to the lower levels of
the memory hierarchy. The request is serviced and the line is
placed in b1. Now, address x is wrongly present in both banks.
A victim buffer helps us avoid this by enabling us to place a
line from the lower level in a bank, only if it does not have a
corresponding entry in the victim buffer. This was necessary
to ensure correctness because this situation was fairly common
in our DNUCA implementation.

At the moment, we are developing a detailed DRAM model
(DDR3 and DDR4). Additionally, we are also working on
simulating hardware transactional memory.

G. Network-on-Chip (NoC)

The NoC implementation is generic - it can connect com­
ponents such as cores, cache banks, directories and memory
controllers. Every component of Tejas has a network interface
attribute. This is essentially the component's point of contact
with the rest of the system. If A wants to send a message
to B, it simply executes B.getPortO.put(msg). If A and B
have the same network interface (assume a private Ll wishes
to conununicate with its write buffer), then the message is
simply transferred to the receiver inunediately. If A and B
have different network interfaces then the message is sent over
the network.

Our NoC implementation is fairly rich. We support packet
switch traffic in both cut-through and worm-hole routing
modes. We support a variety of topologies: bus, ring, mesh,
torus, fat tree, omega and butterfly. Tejas supports both static
(X-Y, West-First, North-Last, Negative-First) and adaptive
routing schemes. We simulate complex multi-port routers with
support for virtual channels, bypassing, and lookahead routing.
Tejas is the first public domain simulator to also support
optical networks. We support SWMR (single writer-multi
reader) and MWSR (multi writer-single reader) networks with
support for arbitration and optical barriers.

H. Power and Temperature Modeling

Tejas uses the McPAT [19] power model. We have an
additional power pack that takes the default XML based
configuration file as input, creates a configuration file for
McPAT, runs McPAT, and creates a new Tejas configuration
file that has the energy per access for each structure. At the end
of the simulation we report the power consumption of all the
micro-architectural structures. We can additionally interface
with the Orion2 [20] power model for NoCs, and also generate
an energy consumption trace that can be provided as an input
to a temperature simulator such as HotSpot. McPAT [19] and
Orion2 [20] have been rigorously validated by the respective
authors.

I. Relaxed Memory Consistency Models

Tejas supports sequential consistency as well as weak con­
sistency models such as RC and TSO. For simulating relaxed
memory models, we need to have support for memory fence
instructions, and we need to incorporate the concept of read
and write completion in the memory system. To simulate the
memory fence instruction and simulate memory access comple­
tion, we need the memory system to send an acknowledgement
after a memory access (load/store/sync. operation) is globally
visible. Read operations are synchronous by nature. Write
operations, however, require explicit acknowledgments to be
sent. We thus need to keep track of the state of the memory
system. Only when all the changes pertaining to a store request
are reflected in the memory system and subsequent loads are
guaranteed to get the value written by the store (or a newer
value), we signal the completion of the request. This required
changes in the MSHR and the directory. In specific, we signal
the completion of a store, when we get exclusive access to the
line in the directory.

52

1. Memory Optimizations

One of the main contributors towards Tejas's performance
is its superior cache locality. As elaborated in the high-level
architecture (Section II), there are four main phases in the
simulation process - emulation, communication, translation
and micro-architecture simulation. The straight-forward way
of implementing this would be to operate at the granularity of a
single instruction - emulate a single instruction, communicate
the information packets, translate it to a set of VISA instruc­
tions, and simulate these. Such an approach, though simple,
suffers from poor locality, in both the code and data segments.
Instead, we work at a higher granularity of 50 packets. This
results in considerable time spent executing one phase before
moving to the next. The improved cache locality results in
improved simulation speed. Increasing the granularity further
proved counter-productive as the buffering structures between
the phases became prohibitively large.

One of the biggest advantages of Java is dynamic mem­
ory management. It makes prograrmning very easy because
the user does not have to manually free memory segments.
However, the garbage collector has its limits. For extremely
frequently instantiated data structures such as the Instruction
object or the Event object, dynamic memory management
is associated with very large performance overheads. Hence,
we decided to use pooling (object reuse) for the Instruc­
tion objects. Instruction objects are created in the translator
(right after translation), and are destroyed upon retirement.
Since these points are very clearly defined in the code of
our simulator, it was very easy to fetch and return objects
to a pool of instructions. We further optimize the pool by
making its size variable - we start with a reasonably small
sized pool (function of the number of static instructions in
the executable), and grow it on demand. This provides an
additional improvement in performance. A related optimization
is with respect to operands - an object representing every
legally possible operand is created at the start of simulation.
References to these are used during the simulation, instead of
creating them anew. They do not have any dynamic component,
allowing multiple instruction objects to reference the same
operand object.

We did not use pooling for Event objects because this
would unnecessarily complicate the code. Event objects are
used throughout the simulator's code and there is no clear
point at which they stop getting used. We thus employ an
alternate strategy. We avoid creating multiple instances of the
Event class by reusing the same object as much as possible.
The Event class is highly configurable and can represent many
kinds of sub-events, so that the same event object can go
through the NoC to the directory, and then to the owner of the
cache line. We further reduce the frequency of the invocation
of the garbage collector by hand coding some of the frequently
used data structures such as the linked list. The implementation
of the linked list in java.util. LinkedList allocates a heavy con­
tainer object during each addition operation, and encapsulates
the given data in it. This increases the chances of the invocation
of the garbage collector. Instead, we have a next pointer with
the parent class of every simulation element that can be a part
of a linked list. We thus do not require an encapsulating object.

21.87 22.57

18.3818.20 18.32

7.63

.g
::;: Q. u � � � � "
:li '" :§ �

� "' • 8. � E :;r
M

D e
" '" 0
'"

Fig. 4: Validation : SPEC CPU2006 suite

VII. EVALUATION

A. Validation against Native Hardware

In this section, we discuss the validation of Tejas against
a PowerEdge R620 Dell server (for details see Table III). We
used a suite of 17 serial workloads from the SPEC CPU2006
benchmarks and a suite of 11 parallel workloads from the
SPLASH-2 benchmarks. First, with the help of the Linux "perf"
command, we recorded the number of cycles taken to execute
each of the benchmarks on the target machine (averaged
across 10 runs). Subsequently, Tejas was configured to mimic
the target machine as closely as possible (see Table IV for
details). The simulated time reported by Tejas was compared
against the results obtained from the native hardware, as per
the standard procedure adopted by other simulators (see the
validation results of Gem5 [21]).

TABLE III: Details of the reference hardware

Parameter Value l"drameter Value
Microllrchitecture Intel Sandybridge Number of cores 12

Mllin Memory 32 0B Memory Type ECC DDR3
L 1 i-cache and d-cache 32 KB L2 cache 256 KB

L3 Cliche 15MB Frequen<..)' 20Hz
Hyper-thr�dingIDVFS Disllbled Reorder Buffer 168 micro-ops

Load Buffer Size 64 Store Buffer Size 64
operating System untu 12.10 Linu;\;'3.5.0-36-generic, 64-bit

Sequential benchmarks validation: Figure 4 shows the
validation error for serial workloads. The average absolute
error (in execution time) is 11.45%. 10 out of 17 benchmarks
have an error less than 10%. Only 4 benchmarks have errors
in the 20-30% range (sjeng, astar, mel, and gee) .

Parallel benchmarks Validation: Figure 5 shows the
validation error for parallel workloads. The average absolute
error was observed to be 18.77%. In this case, the average error
is greater primarily because of the jitter introduced by variable
reordering of the application threads by the OS scheduler.
Secondly, there are hardware events such as I/O events that
induce jitter, and lastly we are not privy to all the details
of the operation of the cache coherence protocols in Intel
systems. Only 3 benchmarks had errors more than 25% namely
radiosity, radix and water-spatial. For most of the benchmarks,
the error ranges from 10 to 17%.

Comparison with other Simulators: Tejas is more
accurate for both serial and parallel benchmarks as compared
to most of the other widely used architecture simulators
(for which published results for x86 hardware are available).
MARSS [22] is a cycle-accurate simulator based on PTLsim.
It is a tool built on QEMU and provides fast full system

53

TABLE IV: Simulation parameters

Parameter Value II Parameter I
Pipeline

Retire Width 4 Integer RF (phy)
Issue Width 6 Float RF (phy)

ROB size 168 Predictor
IW size 54 Bmispred penalty

LSQ size 64
iTLB 128 entries dTLB

Integer ALU 3 units lat = I cycle
Integer Mul I unit lat = 3 cycles
Integer Div I unit lat = 21 cycles
Float ALU 1 units lat = 3 cycles
Float Mul I unit lat = 5 cycles
Float Div I unit lat = 24 cycles

RoT: reciprocal of throughput

Private Ll i-cache, d-cache

Write-mode Write-Through Block size
Associativity 8 Size

Latency 3 cycles

Private Unified L2 cache

Write-mode Write-Back Block size
Associativity 8 Size

Latency 6 cycles

Shared L3 cache

Write-mode Write-back Block size
Associativity 8 Size

Latency 29 cycles

Mam Memory Latency II
NOC and Traffic

Bus
32 bytes

3.06

25.94

30.03

Value

160
144

TAGE [18]
8 cycles

128 entries
RoT = I
RoT = I

RoT = 12
RoT = I
RoT = I

RoT = 12

64
32 kB

64
256 kB

64
15 MB

Fig. 5: Validation : SPLASH-2 suite

simulation. MARSS has been validated against a x86 target
machine with the Intel Xeon E5620 processor. For the SPEC
CPU2006 benchmark suite, it has errors ranging from -59.2%
to 50%, with an average absolute error of 23.46%.

Sniper [4] sacrifices cycle accuracy in favor of simula­
tion speed by employing sampled simulation. It has been
validated against a 4-socket Intel Xeon X7460 Dunnington
shared memory machine. An average absolute error of 25%
has been reported for the SPLASH-2 benchmark suite (we
report 18.77%). FastMP [8] simulates a subset of cores in
detail and uses this information to approximate memory traffic
for other cores. FastMP has been validated against a real
x86 machine using the SPEC CPU2006 benchmark suite. It
suffers from an average error of 9.56% but for some of the
benchmarks the error is as high as 40% (our maximum error
is roughly 27%). To the best of our knowledge other popular
simulators such as SESe [3] and MacSim [23] have not been
validated. Multi2sim, which is a heterogeneous simulator, has
been validated for the GPU framework but its CPU simulation
framework has not been validated and published (to the best
of our knowledge). Our GPU pipeline has been validated by
Malhotra et al. [15] (error < 7.67%). Gem5 has been validated

40 0

35 0

0

0

0

(

(

5 0

00

20C

15

5C

1c:::::J GemS c:::::J Multi2Sim _ Tejas l

� � rr �
'" '"

� � rrI � r
N III 01 X '- » c.

� �
u

Fig. 6: Speed - serial workloads

198.02

136.66
132.16

120.07

152.00

92.05 94.46

125.16 121.46

151.12

132.91

Fig. 7: Speed - parallel workloads

r r
<II

against an ARM Cortex-Al 5 processor with a mean error of
13% for SPEC CPU2006 benchmarks and mean error of 17%
for dual core simulations of parallel benchmarks. Note that
Cortex-A15 has a much simpler pipeline than Intel Sandy­
bridge, yet our error numbers are better for serial benchmarks.

B. Performance

Next, we compare the performance of Tejas with two
popularly used cycle accurate simulators: Gem5 [5] and
Multi2Sim [6] . We run all our experiments on a Dell server
(see Table III). Figure 6 shows the relative speeds of simulation
(including emulation, trace transfer and translation) in terms
of kilo-instructions simulated per second (KIPS) for serial
benchmarks (our Multi2Sim simulations did not complete for
some benchmarks). Tejas outperforms Gem5 and Multi2Sim,
with an average speed of around 175 KIPS. It is on an
average 25% faster than Multi2Sim and 220% faster than
Gem5. Figure 7 shows the simulation speeds of different
benchmarks in the Splash2 suite. The average simulation speed
of Tejas is around 140 KIPS. We were unable to simulate
the Splash2 suite in Multi2Sim with acceptable validation
numbers. The Gem5 simulator simulates parallel workloads
only in the full system mode, which would not make for a
fair comparison against Tejas. Both Tejas and Multi2Sim can
simulate parallel applications without simulating the OS. In
any case, the simulation speed of Gem5 is 3-4 KIPS for parallel
applications, and thus Tejas is two orders of magnitude faster.

54

VIII. CONCLUSION

In this paper, we have presented the design of the Tejas
architectural simulator, which has been designed to be platform
independent. We achieve this by decoupling the instruction
emulation and the timing simulation. We can use a wide
variety of platform dependent emulators that can provide us
execution traces from many different platforms with different
system software and different ISAs. The timing engine has
been written in Java, making it platform independent. Tejas
supports most of the advanced features provided by competing
cycle accurate simulators and additionally outperforms other
simulators in its class both in terms of performance and
accuracy vis-a-vis native hardware.

REF ERENCES

[l] E. K. Ardestani and J. Renau, "Esesc: A fast multicore simulator using
time-based sampling," in HPC A, 2013.

[2] T. Austin, E. Larson, and D. Ernst, "Simplescalar: an infrastructure for
computer system modeling," Computer, 2002.

[3] SESe: SuperESCalar Simulator. [Online]. Available: http://iacoma.cs.
uiuc.eduJ�paulsack/sescdoc/

[4] T. Carlson, W. Heirman, and L. Eeckhout, "Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,"
in SC, 2011.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness. D. R. Hower, T. Krishna, S. Sardashti et al., "The gemS
simulator," ACM SIGARCH Computer Architecture News, 2011.

[6] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. R. Kaeli, "Multi2sim: a
simulation framework for cpu-gpu computing," in PACT, 2012.

[7] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, "Graphite: A distributed parallel simulator
for multicores," in HPC A, 2010.

[8] S. Kanaujia, I. E. Papazian, J. Chamberlain, and J. Baxter, "Fastmp: A
multi-core simulation methodology," in MOBS, 2006.

[9] Tejas: A java based versatile micro-architectural simulator.
[Online]. Available: http://www.cse.iitd.ac.in/%7Esrsarangi/files/papers/
patmospaper.pdf

[10] D. Sanchez and C. Kozyrakis, "Zsim: fast and accurate microarchitec­
tural simulation of thousand-core systems," in ISC A, 2013.

[11] G. Malhotra, P. Aggarwal, A. Sagar, and S. R. Sarangi, "Partejas: A
parallel simulator for multicore processors," in ISPASS (Poster), 2014.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, "Pin: building customized
program analysis tools with dynamic instrumentation," ACM Sigplan
Notices, 2005.

[13] F. Bellard, "Qemu, a fast and portable dynamic translator." in USENIX
Annual Technical Coriference, FREENIX Track, 2005.

[14] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, "Ocelot: A
dynamic optimization framework for bulle-synchronous applications in
heterogeneous systems," in PACT , 2010.

[15] G. Malhotra, S. Goel, and S. R. Sarangi, "Gputejas: A parallel simulator
for gpu architectures," HiPC, 2014.

[16] M. Yourst, "Ptlsim: A cycle accurate full system x86-64 microarchitec­
tural simulator," in ISPASS, 2007.

[17] D. Alpert and D. Avnon, "Architecture of the pentium microprocessor,"
Micro, 1993.

[18] A. Seznec and P. Michaud, "A case for (partially) tagged geometric
history length branch prediction," JILP, 2006.

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, "Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures," in MICRO, 2009.

[20] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, "Orion 2.0: a fast
and accurate noc power and area model for early-stage design space
exploration," in DATE, 2009.

[21] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga, and N. Paver, "Sources of error in full-system
simulation," in ISPASS, 2014.

[22] A. Patel, F. Afram, S. Chen, and K. Ghose, "Marss: a full system
simulator for multi core x86 cpus," in DAC, 201l.

[23] H. Kim, J. Lee, N. Lakshminarayana, J. Lim, and T. Pho, "Macsim: Sim­
ulator for heterogeneous architecture," Georgia Institute of Technology,
2012.

