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Abstract—We are moving into an era where large SoCs will have
a portfolio of different kinds of cores and accelerators. Many of
these computational elements might be designed by third parties. In
this setting, it is beneficial to collect accurate runtime information
such that we can diagnose performance problems, verify and report
correctness issues, and collect usage scenarios of third party hardware.
This problem is non-trivial if we consider the possibility of defective or
malicious elements in the chip. We design an architecture, SecX, which
helps us collect various metrics of potential interest in a fair, reliable
and secure fashion. These logs can subsequently be made available to
users, IP vendors, and the system integrator through a trusted third
party called the auditor. The performance (0.03%), power (1.04W) and
area (0.32%) overheads of our scheme are minimal.

I. INTRODUCTION

Designers are increasingly shifting towards incorporating more

and more specialized accelerators on chip, instead of having many

general purpose cores [1]. These accelerators can perform a variety

of tasks such as encryption, compression, XML parsing, network

packet processing, and regular expression matching. Such multi-

core processors with a host of accelerators are already being man-

ufactured by major processor vendors. Examples of such processors

include Intel Ivybridge, IBM PowerEn [2], and IBM Power7.

In the future, we expect to see this trend continuing, and a

section of the research community believes [2] that a lot of these

accelerators will be designed by third parties. In this context, we

note that there will be multiple parties involved in the process of

designing an SOC – a user defines the system requirements, a

system integrator designs a system that can meet the requirements

by using its own designs and sourcing third party IPs from multiple

accelerator vendors. It is expected that a heterogeneous system

comprising of a myriad of such components will have a host of

timing, correctness, security, and performance issues (as reported

in [3, 4]). As a result, there is a need for a reporting (auditing)

framework to collect information from processors in the field, and

make it available to the various parties for offline analyses with user

consent. Such a framework finds diverse applications in debugging,

malware analysis, and reporting of usage scenarios as explained in

Table I. Current approaches are either at a very high level such as

performance counters, or are at a very low level such as scan chains

and similar trace collection buffers. We desire a hardware solution

that operates at the interface of the cores and the accelerators, and

logs the interaction between these entities.

An added requirement of such a framework is that it has to be

trusted by all the parties (users, system integrators, vendors), and

should be tamper proof. This is important as all parties stand to

gain from manipulation of logs. For instance, consider a scenario

where the system integrator is in charge of the auditing. Now

suppose a user’s task fails to meet the deadline because of a poorly

designed interconnect. The system integrator may instead fabricate

logs that implicate some of the accelerators for the delay. This can

have an adverse effect on the accelerator vendors from a business

standpoint. Note that we assume a trusted foundry in the rest of

the paper. There are works that focus on fabrication at untrusted

foundries [5]; however, this is beyond the scope of this paper.

Fair, Tamper-Proof, Secure and Reliable Information Gath-
ering: We design such a reporting framework called SecX, that

efficiently collects and disseminates useful runtime information to

the concerned parties, in a manner that is fair to all concerned, that

cannot be illegally influenced by anyone, and that does not disclose

anything sensitive.

We define four metrics that capture the framework’s require-

ments: QoS (quality of service), QoE (quality of environment), HoI

(hash of input), and HoO (hash of output). The QoS metric refers

to accelerator throughput or the duration of jobs, depending upon

the context. The QoE metric describes the runtime environment

perceived by an accelerator. This includes the memory latency, and

available memory bandwidth for the accelerator. HoI is the hash

of the input to an accelerator, and the HoO metric is the hash of

the output. These four metrics are collected by a third party called

the auditor, one who is trusted by all the parties (vendors, users,

and system integrators). The auditor makes the logs available to

the various parties on-demand, who benefit from them as shown

in Table I. Note that the concept of a trusted third party is not

unrealistic. Intel’s Trusted Execution Technology (TXT) uses a

secure cryptographic processor [7] provided by a trusted third party

that both hardware and software developers trust.

The system integrator and the IP vendor incorporate auditor-

provided macros in their designs. During runtime, the auditing

hardware elements co-ordinate to fairly, securely and reliably log

the four metrics for each task run on an accelerator. The logs

are then transferred to the servers of the auditor. The different

parties then request the auditor for the logs. Authentication and

data integrity is ensured by SecX. At the moment, we collect

general architectural parameters; however our framework can cap-

ture very specific parameters also. In this paper, we look at the

fundamental issue of guaranteeing the correctness and consistency

of the collected information, and utilizing it gainfully (Table I) to

find and report performance and correctness problems.

II. RELATED WORK

The field of DFD (design for debug) architectures is very

extensive. Over the last ten years researchers have proposed a lot of

techniques to collect debugging information (in the form of logs),

and analyze them for defects(representative papers [8, 9]). Chen

et al. [10] create accelerator specific debug logs (in hardware) for

both correctness and performance problems. Our work is different

from this line of research as for us the collection of logs is difficult

because of potentially malicious components in the system.

Another related line of research is the efforts made to detect

and/or protect against malicious hardware. Hicks et al. [11] high-

lighted the problem of malicious hardware accelerators. Subse-
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Table I
NEED FOR RUNTIME INFORMATION REGARDING DIFFERENT ON-CHIP COMPONENTS

Application Description Realization Through SecX
Improving
Accelerator

Designs

Accelerator designers will find usage scenarios useful, e.g., typical latencies and throughputs of the acceler-
ator’s accesses to the memory. They can use this to improve their pipeline designs – how best to overlap
compute/communicate phases to reduce run time and/or power.

QoS and QoE help the vendor to study performance
under different environment conditions

Analyzing
System

Throughput

System integrators will find extremely useful the breakdown of delays spent in different parts of the chip. For
each task, we can know the time consumed at the cores, accelerators, memory system and the interconnect. This
will aid in the identification of bottlenecks and improvement of future designs.

QoS and QoE help the system integrator to study
performance of different components, both her own
and externally sourced

Handling Cor-
rectness Issues

The accelerators may give incorrect results. Defects going undetected through post-silicon validation is well
documented. The user will like a reporting framework to raise a concern with the vendor.

User detects functional bug (possibly offline); reports
to vendor; uses HoI and HoO to corroborate her claim

Handling
Timing Issues

An accelerator may take too long to complete a task. This, again, is something that cannot be caught during the
validation phase for many accelerator classes. E.g., the run time of a linear programming accelerator is closely
tied to the actual input. In a soft real time scenario, deterministic accelerator behavior is needed to meet deadlines.

User detects timing bug (possibly offline); reports to
the vendor; uses QoS to corroborate her claim

Handling
Security
Issues

The accelerators can also possibly be deliberately malicious [6] – they can deliberately compute wrongly, compute
slowly, disrupt the rest of the chip (DoS attacks) or perform data theft.

Computing wrongly/slowly is proven using QoS/QoE/
HoI/HoO, thus discouraging accelerators; DoS and
data theft are prevented by gateways (Section III-B)

Enforcing
Service Level
Agreements

What if the user falsely reports correctness or timing issues? What if the system integrator/accelerator vendor
falsely blames the other for a missed deadline? This could damage the reputation of an accelerator vendor / system
integrator and hamper her future in the industry.

auditor signed logs prevent the parties from making
false claims
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Figure 1. Hardware architecture

quently, there have been several proposals to detect and remove

such hardware using a host of techniques such as security as-

sertions, and pattern mining [12]. HybridOS [13] seeks to isolate

defective or malicious accelerators at the OS level. Our contribution

can enrich these techniques with high quality runtime information.

III. ARCHITECTURE

A. Hardware Overview

A SoC can be viewed as being composed of circuitry belonging

to different domains – host, guest and auditor, as shown in

Figure 1. The host domain refers to all components designed

by the system integrator. The system integrator procures third-

party accelerators from IP vendors in the form of hard macros.

These third party accelerators constitute the guest domain. Each

guest is allowed access to the rest of the chip only through host-

maintained gateways, as shown in the figure. The auditor provides

meters (in the form of hard macros) to both the accelerator vendor

and the system integrator. The latter two integrate the meters into

their designs as shown in Figure 1. The meters and the auditor-

comptroller(AC) together form SecX, and constitute the auditor
domain.

As can be seen in Figure 1, for every accelerator in the system,

there are two meters – one embedded in the guest design (mG)

and the other in the host gateway (mGW). The need for dual-

metering is explained in Section IV-B2. The two meters work

together to collect the runtime statistics in a fair, secure and reliable

manner. The collected logs are maintained by the central Auditor-

Comptroller (AC).

B. Hardware Components

Auditor-Comptroller (AC): The Auditor-Comptroller (AC) is

a small structure that handles the functionalities of receiving, val-

idating, processing, storing and serving logs. Logs are maintained

for each task run on each guest. The contents of each log are as

Table II
DESCRIPTION OF THE LOGS

Timestamp 16 B job-id 8 B
guest-id 1 B [ up to 256 guests ]
job-type 1 B [ up to 256 job types ]

QoS.Latency 4 B QoS.Throughput (B/s) 4 B
QoE 256 B [ R × nbins × 4 (R=4, nbins=16) ]
HoI 128 B HoO 128 B

Checksum 32 B [ SHA-256 ]

Total 578 Bytes [R = No. of resources]
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Figure 2. Structure of a meter

shown in Table II. Each log is tagged with a timestamp and a job-

id. A hash-based message authentication code (HMAC) (based on

256-bit SHA) of the log is made to ensure integrity and authenticity.

The AC has its own limited non-volatile storage to store the logs.

Periodically, it encrypts and stores detailed auditor logs in the host’s

storage device. The ACs in all chips in the field are expected to

periodically upload the logs to the auditor’s servers. The various

parties – system integrator, IP vendor and user – may contact the

auditor to obtain the logs.

Meters: The schematic of a meter is shown in Figure 2. The

meters are responsible for the collection of the QoS, QoE, HoI, and

HoO metrics. We use a CAM array to store the starting time of

each active task on the accelerator. When a task finishes, we access

the CAM to find its starting time, and subsequently compute its

duration. For QoE, we compute a distribution of resource access

latencies using binning. Each bin is essentially a frequency count

(4 bytes) of the number of accesses whose latencies fall in the

particular bin. The number of bins, and the range of values that a

particular bin corresponds to is accelerator/resource specific. SecX

imposes no restriction in this regard. Multiple outstanding resource

accesses are possible – here again a CAM is employed to store

the starting time of each resource access request. Additionally,

the meter is capable of performing tabulation hashing to compute
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HoI, HoO and HoT (hash of all traffic – see Section IV-B3). QoS,

QoE, HoI, HoO are maintained only at mGW; HoT is computed at

both the meters. The meters and the AC are capable of generating

time-stamps, and have dedicated circuitry to perform different

cryptographic operations (see Section IV-B5). The parameters and

sizes of all the structures are shown in Table VI (in Section V).

Gateways: Gateways (GWs) are host-maintained circuits that

form the interface for a guest to the rest of the chip. This allows

the host to prevent any unauthorized access or signaling by the

guest. Gateways essentially implement resource access lists. They

also maintain a small TLB to translate the guest’s memory requests

(see Section IV-A).

IV. SYSTEM OPERATION

A. Functional Layer

1) Job Creation: The accelerators expose a software API that

allows users to access them. A function to access a guest has the

following form:

int issue(int taskcode, void * input, void * output, int ip-length,
int op-length)

When the user executes this function, a host core sends a “job

create” message to the guest containing the taskcode (task type,

as the guest may be capable of performing more than one task),

memory addresses of the input and the output, and the lengths of

the input and the output segments.

After receiving this message, the gateway configures the access

lists that it maintains, and it forwards the message to its meter

mGW. mGW generates a job-id and records the job start time

(required for the QoS metric), and initializes the frequency bins

for the QoE metric. It also initializes the input and output hashes.

The computation of the input/output hashes requires the mGW to

be able to distinguish between guest accesses to the input data,

output data and the temporary working area. We assume that the

input and output memory regions cannot be used as temporary

work-areas, and cannot be modified by other cores while the job is

running (due to memory consistency issues). The mGW maintains

a table of memory ranges for the input and output data of each

active job. It accesses this table to find out if a memory request is

reading an input, or writing to an output. It can then add the data

read or written by the memory request to the HoI or HoO. Note

that these are permutation independent hashes (order of accesses

does not matter). Subsequently, the request (timestamped by the

mGW) is forwarded to the guest, where its meter verifies that its

current time is within τ cycles of the recorded job start time. If

the time difference exceeds a threshold, then most likely there is

a malicious delay, and the job is dropped.

2) Job Execution: During the execution of a job, the guest

reads input data, performs computations on it. We assume the

Rigel memory model [1] that enforces software based coherence at

task boundaries. For security reasons, the gateway maintains a 32

entry 4-way associative TLB that maintains a portion of the host’s

TLB. This TLB is used to translate virtual addresses into physical

addresses. If there is a TLB miss, then a request is sent to the host

core. Now, when a guest wishes to read or write data, it sends a

request to its meter (mG). It timestamps the message, and sends it

to mGW. The mGW checks for malicious delays by comparing the

timestamps, and then updates the HoO if it is a write request. The

gateway then proceeds to construct a memory request by accessing

its TLB. After the request returns (in the case of a read), mGW

notes the time, computes the duration of the request, and updates

HoI . Subsequently, the gateway forwards the response to the guest.

mG follows the same protocol (same as while sending the message)

to verify the timestamps, and check for malicious delays. Along

with accessing memory, accelerators can access other resources as

well (such as I/O devices). For all communication between the

guest and the gateway, mG and mGW both individually maintain

a permutation-independent hash of all traffic (HoT). These hashes

are used to identify any data corruption in the communication.

3) Job Completion: The guest sends a job completion message,

containing its computed HoT, to the GW once it is done with its

computation. The GW forwards the message to the mGW, who

compares its HoT against the one received to detect any data

corruption. The mGW then computes the latency of the job, and the

average throughput (output bytes/second). It compiles the various

components of the QoS, QoE, and the input/output hashes to form

the job log. It then creates a digest (SHA) of the log. The log,

along with the digest is then sent to the AC via the GW. The AC,

upon receipt of the log stores it in its local storage.

B. Security Layer

Owing to the fact that multiple parties are involved, a variety of

misbehavior patterns and fairness issues are possible. The different

parties can potentially project each other in bad light, which can

have significant repercussions. The SecX framework, which all

parties trust, must prevent this. In this section, we will extend the

functionality explained in the previous section with security and

cryptographic aspects [14] to form a complete solution.

1) SecX Setup: We begin with explaining the setup of SecX.

When the chip is powered on for the first time (or maybe after burn-

in tests), the AC needs to verify that all the meters in the system

are genuine. We suggest the employment of Physically Unclonable

Functions (PUFs) in the meters. A PUF typically uses some random

phenomena such as lithographic variations to compute a unique key

for a circuit. We assume that the fabrication facility is trusted, and

it can record the PUF based keys for each meter after fabrication

(see [15] for more details). To verify that the meters are genuine,

the AC can aggregate the random keys, and send them to a remote

server, which can validate the keys. After verification, the AC

generates a Global Meter Key GMK (shared between all the SecX

hardware). It employs the technique of public PUFs suggested in

[16] to securely distribute the GMK to all meters. Additionally,

the GMK may be periodically updated to improve security. After

receiving the GMK, each mGW sets up a nonce sequence (sequence

of random values) and communicates this (securely, using the

shared GMK) to its companion mG.

2) Handling Malicious Delays: We begin by explaining the

need for a dual-metering scheme at the host-guest interface. Guest

resource request/response messages cross the guest-host domain.

If the latency is measured on the host side, the host can delay the

sending of the response to the guest after the latency measurement,

in a bid to affect the QoS. If the latency is measured on the guest

side, the guest can delay the sending of the request after getting

it timestamped (or delay the sending of the response to its meter),

in a bid to affect the QoE. To guard against these, meters on both

sides are required. The meter at the sending side timestamps the

message, and the meter at the receiving side verifies that no undue

delay was introduced. It is to the advantage of the sender to send

the message to its meter as soon as possible for timestamping.
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Similarly, it is to the advantage of the receiver to use the message as

soon as possible after timestamp verification at its meter. Any delay

induced in between timestamping at the sender, and verification at

the receiver, by either party, is detected by the dual-meter system.

Only the meters can encrypt the timestamps because they

have a unique key to perform the XOR based encryption (see

Section IV-B5). This prevents parties from generating their own

timestamps. It must be noted that this scheme only allows the

detection of misbehavior. Identifying the guilty party is a harder

problem, and is something we are pursuing. Table III shows the

complete guest resource access protocol (functional and security

aspects). This detection of malicious delays has a minimal effect

on performance.

3) Handling Malicious Data Corruption: The host/guest can

potentially provide the other with incorrect data, and accuse the

latter of incorrect functionality. This is countered by having SecX

maintain a hash of all traffic between the host and the guest (HoT).

Just like in the case of malicious delays, computing the hash at only

one of the meters proves insufficient. The solution is to maintain

the HoT at both the host and guest meters, and compare the two

HoTs at the time of job completion. A mismatch indicates a data

corruption at some point of the host-guest communication. The

HoT is not stored as part of the logs.

4) Authentication and Integrity: In our example system, the

NoC is in the host’s domain, allowing it access to all messages

sent/received. This could compromise fairness, allowing for false

accusations of a guest being defective. Thus, the logs, before

transfer from the mGW to the AC, are encrypted. These encrypted

logs are stored in the host’s storage. SHA-based signatures, with a

secret key known to all the auditor hardware is used in this case.

5) Cryptography Support: We use multiple types of encryption

depending upon the security threats, and the time required for

encryption and decryption. We use fast XOR based encryption

for encrypting the timestamps of memory requests and responses,

which are frequent messages. We use SHA encryption for a more

infrequent class of messages related to the job completion protocol.

Tabulation hashing is used to create digests of the input, output

and all traffic, which is off the critical path. Lastly, for the AC’s

communication with the auditor’s servers, we need to use one of the

slowest (100+ cycles) yet strongest methods: public key encryption.

• Simple XOR : When messages move from one domain

(host/guest) to the other, the two parties may induce delays

to affect the QoS/QoE in their favor. To check this, a dual

metering system, where their attached timestamps are checked

(explained in Section IV-B2), is used. Now, these timestamps

may be spoofed by the malicious party to escape detection. To

protect against this, the timestamps have to be encrypted using

a key private to the pair of meters. Also, these cross-domain

messages are frequent. Therefore, the encryption mechanism

must be light-weight. For this reason, a simple XOR-based

encryption, along with nonce sequences is used.

• SHA : We employ SHA based encryption when integrity,

authenticity and non-repudiation of messages is important. For

each sender-receiver pair, a secret key is set up that is shared

between the two parties. If party A sends a message to B, the

message is attached with a digest of the message using the

shared key. This digest allows B to verify that the sender was

indeed A, and that the message was not tampered with. SecX

employs SHA to sign logs.

Table IV
SIMULATION PARAMETERS

Parameter Value Parameter Value
System Configuration

Cores 24
Accelerators 24 Accelerator Types 6
Technology 14 nm Frequency 3.4 GHz

Shared Elements
L3 cache 64MB (32 banks) Main Memory Latency 200 cycles

NoC and Traffic
Topology 2-D Torus Routing Alg. dyn XY routing

Flit size 16 bytes Hop-latency 1 cycle
Router-Latency 3 cycles

General Purpose Core Configuration
Retire Width 4 Issue Width 6

Private L1 i-cache, d-cache
Size 32 kB Latency 4 cycles

Private L2 Unified Cache
Size 256 kB Latency 12 cycles

Cryptographic Circuitry
XOR Encryption 4 cycles SHA Encryption 41.04ns [17]

• Tabulation Hashing : Simple tabulation hashing is used by

the meters to maintain hashes of the input/output/traffic of

the accelerator. Apart from being simple to compute, this

hashing technique has the desirable property of permutation-

independence. The payload is broken down into fixed size

tokens (8 bits). This token is used to index a precomputed

secret table (4kB; known to the pair of meters only) to get a

code (128 bits). This code is XORed with the current contents

of the digest (128 bits) to give the new digest value.

• RSA : The communication between the AC and the auditor’s

servers is encrypted using RSA encryption.

• Nonce Sequence : The host/guest may perform a replay

attack to induce a malicious delay. We avoid replay attacks

by tagging messages with a nonce. The meter pairs share a

secret nonce sequence.

V. EVALUATION : OVERHEAD OF AUDITING

In this section, we show that the performance, area and power

overheads of SecX are minimal. We consider a system of 24

host cores and 24 guest accelerators with a 32-bank 64 MB LLC.

The simulation parameters were derived from the designs of Intel

Sandybridge, and IBM Power7 (see Table IV). A portfolio of 6

popular types of accelerators is considered – Table V compares

their hardware and software implementations (scaled to 14nm us-

ing [24]). For the software timing study (Table V), single-threaded

applications of the corresponding library were simulated using the

Tejas simulator [25, 26]. To make the simulation more accurate, the

relevant data was assumed to be in the LLC before-hand (no cold

start misses to main memory). For the hardware timing study, we

incorporated software implementations of the hardware accelerators

in Tejas to give a heterogeneous chip comprising of general purpose

cores and accelerators. We used Cadence tools to synthesize the

control logic using the UMC 90nm standard cell library. Due

scaling to 14nm was performed [24], and we used Cacti 5.3 [27]

to estimate the area and delay of memory structures.

A. Performance Overhead

In this section, we present the performance overhead of perform-

ing secure, tamper-proof auditing. The utilization of the logs, be it

to detect functional bugs or timing issues, is done offline.

We analyze the different stages of the auditing process and

measure overheads. During the job issue phase, the initialization of

the various counters and hashes is on the critical path. We estimate
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Table III
GUEST RESOURCE REQUEST PROTOCOL

Resource Access
Request

(1) guest → mG job id||resource id||payload || is the concatenation operator
(2a) mG → guest digest = XOR(GMK, job id||req id GMK – key known to all third-party hardware

||resource id||cur time||nonce) A unique req id is generated by mG
nonce → next number in a secret sequence of numbers shared between mG and
mGW

(2b) mG updates HoT (off critical path)
(3) guest → GW digest||payload

(4a) GW verifies if resource access is legal
(4b) GW → mGW digest||payload

(5) mGW XOR(GMK, digest) decrypts and checks for timing misbehavior
(6a) mGW → GW req id
(6b) mGW records req id, send time, resource id (off critical path)
(6c) mGW updates HoT (off critical path)
(7) GW → resource req id||payload with a TLB access

Response
(1) resource → GW req id||payload
(2) GW → mGW req id||payload
(3) mGW → GW digest = XOR(GMK, req id||cur time||nonce)

(4a) GW → guest digest||payload
(4b) mGW uses recv time to update QoE latency distribution (off critical path)
(4c) mGW updates HoI and HoO (off critical path)
(4d) mGW updates HoT (off critical path)

(5) guest → mG digest||payload
(6) mG XOR(GMK, digest) decrypts and checks for timing misbehavior

(7a) mG → guest req id
(7a) mG updates HoT (off critical path)
(8) guest guest uses payload

Table V
ASIC V/S SOFTWARE IMPLEMENTATIONS OF ACCELERATORS

Task Details Citation Technology Original Scaled to 14nm Software
Latency Area Latency Area Details Latency

FFT complex 1024-point FFT [18] 0.18 μm 3.2 μs 0.686 mm2 2.3 μs 0.024mm2 FFTW library 32.72 μs

Sort sorting 3969 longs [19] 0.13 μm 32 μs 2 mm2 17.01 μs 0.07mm2 libstdc++6 442.49 μs

JPEG
compressing 640 × 480 pixel bmp

[20] 0.09 μm 1.11 ms 0.062 mm2 0.65 ms 0.004mm2 Independent JPEG Group’s
library

2.16 ms

MD5 512 byte input [21] 0.13 μm 1.96 μs 0.081 mm2 1.04 μs 0.003mm2 OpenSSL/Crypto 9.76 μs

AES 512 byte input [22] 0.13 μm 1.25 μs 0.015 mm2 0.753 μs 0.0005mm2 library 4.749 μs

RSA 128 byte input [23] 0.5 μm 325 ms 3 mm2 133.7 ms 0.011mm2 258 ms

this to be less than 15 cycles. During job execution, each resource

access has to go through the dual-metering system. The critical

path is the nonce retrieval (163 ps) and the XOR encryption (31

ps) at the sender’s side, the transfer to the receiver (30 ps), and the

XOR decryption at the receiver (31 ps). This would add a delay

of 2 cycles (1 each for request/response) to an LLC access. When

the job has completed, the logs are aggregated and signed using

SHA. The logs are sent from the mGW to the AC, which stores

it appropriately. These tasks can overlap with the host’s utilization

of the guest’s output, and hence, are off the critical path.

Table V shows that software is roughly 2-20X slower on average.

The additional delay of 2 cycles represents a worst-case overhead

of 4% for a LLC read access (48 cycle, mean access time).

However, full system simulations done using Tejas, revealed an

average overhead of just 0.03%. The reason for this is as follows:

the increase in resource access latency translates to a decrease

in accelerator performance only if the parameters of the access

(e.g., memory address for an LLC) depend upon the result of some

computation. If there is no such dependency, then the access can be

overlapped with another access or some computation, thus masking

the auditing overhead. The nature of tasks typically accelerated

are ones with statically determinable access patterns, allowing for

significant overlap.

The NoC bandwidth overhead is minimal because the only usage

is the transfer of logs from the meters to the AC. That is, per

accelerated task, a mere 578 bytes (see Table II) is transferred.

B. Area Overhead

The overhead of auditing is dependent on the number of ac-

celerators incorporated. The prime contributors to the area are the

memory elements (volatile and non-volatile) that are required for

the cryptographic operations and for storing/processing logs (in

the case of the AC). The other significant contributors are the

cryptographic circuits: SHA and RSA. Area estimates are obtained

from ASIC implementations of published designs [17, 23]. Table VI

gives the area breakup of the SecX hardware. The total additional

area is 1.267mm2, for a system with 24 guests. Assuming a

reference die size of 400mm2, the area overhead is 0.32%.

C. Power Overhead

The peak power consumption of SecX is estimated at 1.04W

(TDP of 8-core Intel E5-2687W chip is 150W). Cacti [27] was used

to estimate power for memory elements. References [29, 30, 31]

were used for the major logic components. This estimate is as-

suming all 24 guests are operational, and the associated meters are

working with a 100% duty cycle. In practice, the power consumed

would be much lower as firstly, not all guests are simultaneously

active, and secondly, the meters are inactive during the guest’s

compute phase.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a mechanism for measuring useful

metrics (QoS, QoE, HoI, HoO), an architecture for validating this

information, and ultimately saving it in tamper proof logs. The
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Table VI
AREA ESTIMATION OF AUXILIARY STRUCTURES

Component Formula Area Estimate Details
Major Components of the Gateway Meter

SHA 0.003mm2 [17]

Memory for Tabulation Hashing Table 28 × 128bits
Memory for QoS T × 8 bytes T :number of tasks guest can run at the
Memory for QoE R× T × nbins× 4 bytes same time; R:number of different

Memory for I/O/T hashes T × 3 × 1024 bits resources guest makes use of; nbins:
Memory for Nonce Sequence 1024 × 1 bytes number of bins in frequency binning

Memory Total Taking R = 4, T =
4, nbins = 16

0.010mm2 8kB cache (Cacti [27])

Logic 946.92μm2

Sum 0.014mm2

Major Components of the Guest Meter
Memory for Tabulation Hashing Table 28 × 128bits

Memory for HoT T × 1024 bits
Memory for Nonce Sequence 1024 × 1 bytes

Memory Total Taking T = 4 0.010mm2 8kB cache (Cacti [27])

Logic 296.98μm2

Sum 0.010mm2

Major Components of the Auditor-Comptroller
SHA 0.003mm2 [17]

RSA 0.014mm2 [23]

Memory for log processing 0.010mm2 8kB cache (Cacti [27])
Non-volatile Memory for Audit Logs NJA × 586 bytes; Taking

NJA = 7000
NJA: number of jobs audited; refer Table II for
log size

Non-volatile Memory Total 0.664mm2 4MB 32nm RERAM [28]

Sum 0.691mm2

Total Area of Additional Hardware Taking num guests = 24 1.267mm2

Area Overhead Assuming a base chip area of
400mm2

0.32%

performance (0.03%), power (1.04W) and area (0.32%) overheads

are minimal. We wish to extend this work to consider an even

larger set of possible attacks, and make minimal assumptions about

trusted components.
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