
1

Providing Accountability in Heterogeneous
Systems-on-Chip

RAJSHEKAR KALAYAPPAN, Indian Institute of Technology Dharwad, India and Indian Institute of

Technology Delhi, India

SMRUTI R. SARANGI, Indian Institute of Technology Delhi, India

When modern systems-on-chip (SoCs), containing designs from different organizations, miscompute or

underperform in the field, discerning the responsible component is a non-trivial task. A perfectly accountable

system is one in which the on-chip component at fault is always unambiguously detected. The achievement

of accountability can be greatly aided by the collection of run-time information that captures the events in

the system that led to the error. Such information collection must be fair and impartial to all parties. In this

paper, we prove that logging messages communicated between components from different organizations is

sufficient to provide accountability, provided the logs are authentic. We then construct a solution based on

this premise, with an on-chip trusted auditing system to authenticate the logs. We present a thorough design

of the auditing system, and demonstrate that its performance overhead is a mere 0.49%, and its area overhead

is a mere 0.194% (in a heterogeneous 48 core, 400mm2
chip). We also demonstrate the viability of this solution

using three representative bugs found in popular commercial SoCs.

CCS Concepts: • Hardware → System on a chip; On-chip resource management; Transaction-level
verification; Bug detection, localization and diagnosis; Hard and soft IP ;

Additional Key Words and Phrases: accountability, auditing, SoC, third-party IPs, accelerators, heterogeneous

processors

ACM Reference Format:
Rajshekar Kalayappan and Smruti R. Sarangi. 2017. Providing Accountability in Heterogeneous Systems-on-

Chip.ACMTrans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2017), 23 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Researchers

1
believe that the systems of the future will have numerous third party IP (3PIP) circuits

that perform specialized tasks. Industry is already moving in this direction. IBM has recently

decided to offer its Power 9 architecture to system integrators (SIs) such that they can create a large

SoC using multiple Power 9 cores, and other components (cores and accelerators from third parties).

Other IBM processors such as IBM Power 7 and Power 8, and Power En already incorporate a

lot of third party accelerators for performing different kinds of tasks such as regular expression

matching, cryptography, compression, XML parsing, and network packet processing. In the domain

of desktops and rack servers, Intel Ivybridge and Skylake processors incorporate accelerators

1
New Paper, Not an Extension of a Conference Paper

Authors’ addresses: Rajshekar Kalayappan, Indian Institute of Technology Dharwad, Dharwad, Karnataka, 580011, India,

Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India, rajshekar.k@iitdh.ac.in; Smruti R. Sarangi, Indian

Institute of Technology Delhi, New Delhi, Delhi, 110016, India, srsarangi@cse.iitd.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Association for Computing Machinery.

1539-9087/2017/1-ART1 $$15.00

https://doi.org/0000001.0000001

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 1 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 R. Kalayappan et al.

for processing JPEG images and VP-8/9 video decoding. ARM processors stand out in this space,

because they are arguably the most popular IPs that are licensed to SIs. This trend of “IP reuse"

is prudent because designing cores and high performance accelerators are very specialized tasks,

and often a single company lacks the know-how and sometimes the intellectual property rights to

design all of these modules. Because of area, performance, cost, and time-to-market constraints

most companies find it prudent to integrate various third party IPs and create a large SoC. We refer

to such 3PIP containing SoCs as heterogeneous SoCs.

The verification of such heterogeneous SoCs is a daunting task [29]. Evenwith homogeneous SoCs

(SoCs entirely designed by the same organization), many bugs escape validation and affect the target

application in the field (see the errata document published by Blue Gecko [5]). With heterogeneous

SoCs, the problem is further exacerbated. Industry giants such as Texas Instruments [1], Xilinx [7],

NXP Semiconductors [2], and Microsemi [6] have all published lengthy errata documents listing

various bugs in their commercially available heterogeneous SoCs. The problem classes include bugs

in the SI’s modules, 3PIP modules such as Universal Asynchronous Receiver-Transmitter (UART)
controllers not conforming to published standards, other published bugs in the 3PIP modules (such

as documented bugs in ARM cores), and cases where the 3PIP module’s behavior is ambiguous

or unspecified. Thus faulty designs aside, since the different modules are not designed by a single

organization, a new source of bugs has to be dealt with – incomplete or ambiguous requirement

specification by the SI, and incomplete or ambiguous functionality specification by the 3PIP vendor.

There is little standardization in the industry in these aspects [4]. This leads to many corner

cases not being clearly understood. Such integration bugs are harder to catch during post-silicon

validation [29]. For example, Texas Instruments has published an errata document [1] describing a

bug in its integration of an ARM Cortex core in the CC2538 SoC. Furthermore, we also have to deal

with the possibility of malicious cores and accelerators [8].

Since verifying and validating heterogeneous SoCs is never complete, many bugs make their way

to the field. A heterogeneous SoC once commissioned, may therefore produce the wrong results, or

may take too long to produce the results. The customer, whose application has suffered as a result,

expects to be compensated. As discussed, the malfunction could be the fault of any of the 3PIP

vendors or/and the SI. The organizations found responsible for designing the faulty modules, or

the SI found responsible for incorrect integration, must then duly compensate the customer. Note

that the responsible organizations also suffer a loss in their credibility in the market. Naturally,

every organization would like to evade being held responsible for such a malfunction.

This brings us to our problem statement – the achievement of accountable heterogeneous SoCs. An
accountable SoC is one in which the cause of the malfunctioning can be accurately narrowed down

to one (or more) defective on-chip components. Accuracy here implies that the faulty components,

and only the faulty components, are unambiguously implicated.

The problem of identifying malfunctioning on-chip components in the field is well established

– various aspects of it have been studied in the literature. Let us first consider the most common

assumption, which is that the SI is completely trusted by all the 3PIP vendors. There are three

sub-classes of solutions to tackle this problem. The first class of solutions are from the reliability

and Hardware Trojan detection areas. At run-time, SI-designed test circuitry detect if the 3PIPs are

not conforming to the expected functional and timing requirements [8, 20]. The second is that the

SI tries to deterministically reproduce the bug by simulating the system in a controlled environment

with more visibility into the system. We need the user’s inputs, and a method of reproducing the

bug. This can be done for small circuits such as small micro-controllers or DSPs; however, given

the complexity of modern manycore hardware and parallel software, it is impractical to reproduce

the bug deterministically. The third approach is to log information in the chip’s target environment

itself that makes the reproduction of the bug easier [15, 21, 33]. The SI adds on-chip debug hardware

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 2 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:3

that logs the values of critical internal signals, in an effort to capture the state of the system before

it failed. In this paper, we concern ourselves with this approach of online logging to aid debugging.

Now, the assumption that the SI is trustworthy cannot be realistically made. The SI is after all

another business organization. The possibility of the SI being malicious to further its own interests

has been recognized by researchers such as Guin et al. [16]. The IEEE Design Automation Standards

Committee has even developed a standard, IEEE 1735 [3], which prescribes how IP vendors can

protect their IP design from being maliciously stolen or modified by the SI. Thus, while employing

online logging to aid debugging, having SI designed loggers is not fair to the 3PIPs [21]. The SI

stands to gain by tampering the logs and shifting the responsibility for its own bugs to the 3PIPs

(either unknowingly or maliciously). By the same argument, designating the 3PIPs to do the logging

is unfair to the SI. Therefore, a logging solution is required that is fair to all parties involved.

The problem we wish to solve is similar to the one of malicious contractors in the cloud do-

main [24]. A contractor who performs outsourced compute jobs may maliciously do so in an

approximate fashion, so as to maximize its own profits. The customer would like to be able to

detect such malice. This is similar to the chip malfunctioning in the field and producing incorrect

results. Both problems can be solved by increasing the visibility into the functioning of the compute

element (contractor or chip). An aspect of our proposed solution for achieving accountable SoCs is

inspired by the idea of inner state hashes (see Section 6), used to detect malicious contractors [24].

The aim of this work is to introduce accountability as, not just a desirable, but a necessary

property of modern heterogeneous SoCs, and also to introduce one approach of providing this

property. We first formally define the problem of accountability, and then prove that authentic

logging of messages exchanged by on-chip components designed by different organizations is

sufficient to guarantee accountability. We construct a solution based on this premise, and present a

thorough design of it, and show its efficacy in the face of some real bug scenarios derived from the

errata documents of popular commercial SoCs. We also demonstrate that accountability can be

achieved with modest overheads. We believe that our proposed solution is just the tip of the iceberg,

and will serve to inspire other researchers. We propose a generic approach to accountability that

functions rather efficiently in most cases. A massive scope for further research exists to realize

economical accountability solutions under different conditions and constraints.

2 RELATEDWORK
2.1 Runtime Solutions for Creating Trustworthy Systems
Abramovici et al. [8] recognized that attempting to detect Hardware Trojans during the pre-silicon

verification stage or the post-silicon validation stage, results in incomplete coverage. The main

reason for this is that Trojans may be trigger-based. The triggers are typically extremely rare events.

The Trojans consequently escape the verification and validation stages. Hence, run-time solutions

are required that detect when a 3PIP is not behaving according to specifications. Such solutions

are effectively accountability solutions, if it can be assumed that the SI is trustworthy. Similarly,

reliability techniques (comprehensive survey by Kalayappan et al. [20]) that are employed to detect

hard and soft errors can be used as accountability solutions as well, again under the assumption

that the SI is trustworthy.

Vermeulen et al. [15, 33] recognized that to debug modern complex SoCs, it is required that they

be observed in their target environment, running their target applications. These works focus on the

NoC. They recognize that such information collection can be done at the granularity of transactions

between components, rather than adopting a per-cycle approach. This approach not only reduces

the sizes of the traces, it also provides the necessary abstraction for the traces to be related to

the software running on the SoC. We also subscribe to this strategy of logging information at the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 3 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:4 R. Kalayappan et al.

Fig. 1. Model of a 3PIP-containing SoC

granularity of transactions for the purpose of providing accountability. This line of proposals also

assumes that the SI is trustworthy and the collected logs are untampered.

Cloud computing enables the owner of a job to outsource it to a contractor, who computes it

in exchange for a fee. Now, the contractor may perform an approximate computation to reduce

operational costs and therefore increase profits. To detect such malicious computations, simply

verifying the final result is insufficient. Instead, looking at the intermediate results as well gives

greater insight into the computation done by the contractor, enabling detection of any malice [24].

We adopt a similar approach by basing our offline analysis on the intermediate results produced by

each on-chip module as part of executing the customer’s application. Additionally, adopting the

idea of inner state hashes, proposed by Kupcu [24], helps reduce the size of the logs that need to be

collected at runtime (see Section 6).

2.2 Tamper Proof Hardware for Collecting Logs
Kalayappan et al. [21] present a scheme to reliably log the interactions between the SI circuitry

and third party accelerators. They assume that the SI and the accelerator vendors do not trust each

other. They employ trusted third party meters to do the logging. The reliable logs thus collected

can be used for a variety of purposes including debugging, analyzing performance bottlenecks, and

investigating violations in security.

3 ACCOUNTABILITY: THE PROBLEM AND A SOLUTION PARADIGM
3.1 Model of a Heterogeneous SoC
We begin by describing a generic model of a heterogeneous SoC containing IPs from many different

vendors. We focus on NoC based SoCs in this work. Figure 1 shows a descriptive example. The

convention followed is that components designed by the same vendor are given the same color. The

vendor who integrates the different components is the system integrator (SI). All on-chip circuitry

designed by the SI are termed the host circuitry (H). In Figure 1, all components in blue constitute

H . All other components other than the host are termed as guests. In Figure 1, components (b) and

(d) are guests, designed by two different vendors. Let the set of all guests be G. Note that the guests
cannot communicate with each other directly. Any communication between two guests has to pass

through the host. The network-on-chip (or NoC), responsible for providing the network interface

to each component as well as routing packets towards their destination, may be part of the host

circuitry or may be externally procured, that is, a guest. In Figure 1, the NoC, depicted in gray, is a

guest.

When the SI decided to incorporate a particular guestG , it would have agreed upon the conditions
of its use with the guest vendor. First, the nature of the inputs to the guest, IpCondG , are decided

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 4 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:5

upon. For example, in the case of a JPEG accelerator, the possible dimensions of the input image

may be agreed upon by the SI and the guest vendor. Second, the nature of the output of the guest,

OpCondG , is negotiated. This could be the actual result of a computation, as is the case in, say, a

cryptographic accelerator. It could also be a property of the result. For example, in the case of a

compression accelerator, the desired compression ratio may be agreed upon. Third, the quality

of service (QoS) – that is, the guest’s latency / throughput while performing a job – QoSCondG is

agreed upon. Fourth, the quality of the environment (QoE) in which the guest operates,QoECondG ,
is agreed upon. QoE refers to the latency / throughput of H servicing resource requests (e.g.,

last-level cache requests) made by G.

3.2 The Problem of Accountability
In performing the task given by the user of the SoC, H carries out some computations of its own,

and can request the services of the on-chip guests for others. We term such requests as jobs.

Definition 3.1. It is possible that the result returned to the user is either erroneous, or took too

long to be produced. An accountable heterogeneous SoC is defined as one in which the cause of

the error or the delay can be unambiguously isolated to the host and/or one or more of the guests.

To do this isolation, we propose to analyze each of the constituent jobs performed by the guests.

The exercise may find one or more of the guests guilty. Alternatively, all guests may be found to

have performed as per specification, thereby implicating the host as guilty of the errorneous task

execution.

Let the input provided to some guestG as part of some job j be Ipj , the output beOpj , the quality
of service provided be QoS j , and the quality of environment be QoEj .

Definition 3.2. If X is a measurement and Y is a negotiated condition, X ◁ Y denotes that X
satisfies Y . X ⋪ Y denotes that X does not meet the agreed upon condition Y .

Axiom 1. If the dispute is regarding an incorrect task result, a guestG may be held responsible if
and only if the latter performed a job j such that
Opj ⋪ OpG and Ipj ◁ IpG .

Axiom 2. If the dispute is regarding a task result taking too long to be computed, a guestG may be
held responsible if and only if the latter performed a job j such that
QoS j ⋪ QoSG and QoEj ◁ QoEG .

Axiom 3. If no guests can be held responsible, then the SI must take responsibility.

3.3 Accountability through Logging
Our approach to providing accountability is through having the host log events during the SoC’s

operation. This can be accomplished by one of several methods: have dedicated structures on chip,

reuse trace buffers used for debugging (DFD), or use regular physical memory. Subsequently, the

logs are stored in an off-chip disk owned by the user. In the event of incorrect functioning of the

chip, the user provides the logs to the SI. The SI then analyzes the recorded logs offline to ascertain

the guilty component(s).

3.3.1 High Level Logging and Auditing. As per the execution model described, to provide account-

ability, for each job j executed by a guestG, ∀G ∈ G, four logs are required: (i) IpLoдj : consisting
of all communication from H to G, (ii) OpLoдj : consisting of all communication from G to H , (iii)

QoSLoдj : recording the QoS provided, (iv) QoELoдj : recording the QoE provided. These four logs

constitute the high level logs.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 5 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:6 R. Kalayappan et al.

During an off-chip investigation, these four logs are analyzed according to the aforementioned

negotiated conditions.

It bears re-iterating that the vendors do not always trust each other, and having one’s design held

responsible for an SoC’s incorrect functioning is detrimental to a vendor’s credibility in the market.

Consequently, a component may tamper with the logs to hide a bug in its design or shift the blame

towards another component. To ensure that the recorded logs are not tampered with, we propose to

employ an on-chip auditing system, trusted by all vendors, that certifies events. The certificates are

stored along with the logs. A log is authentic only if it has an accompanying certificate. If, during

offline analysis, the SI claims that a guest was the cause of the incorrect behavior, it must prove it

using the certified logs.

Definition 3.3. The high level auditing system provides four certificates for each job j:
IpCertj certifying IpLoдj = Ipj , OpCertj certifying OpLoдj = Opj ,
QoSCertj certifying QoSLoдj = QoS j , QoECertj certifying QoELoдj = QoEj .

Theorem 3.4. A heterogeneous SoC is accountable if and only if the four logs – IpLoдj , OpLoдj ,
QoSLoдj , and QoELoдj , and the four certificates to authenticate the collected logs – IpCertj , OpCertj ,
QoSCertj , and QoECertj , are available, ∀j ∈ jobs performed by any guest G ∈ G.
Proof: By Definition 3.3, the four certificates ensure that the four logs collected by the host –

IpLoдj ,OpLoдj ,QoSLoдj , andQoELoдj – correspond to what actually transpired during the in-field

execution, that is – Ipj , Opj , QoS j , and QoEj . By Axioms 1, 2, and 3, the four measurements – Ipj ,
Opj , QoS j , and QoEj – are necessary and sufficient to provide accountability.

3.3.2 Low Level Logging and Auditing. As stated in Theorem 3.4, the high level logs directly

correspond to accountability. However, practically collecting them in hardware, with minimal

overhead, is difficult. We propose to have the loggers incorporated on-chip by the SI collect low
level logs. For each message that is communicated between the host and a guest (recall that two

guests cannot directly communicate with each other), (i) the contents of the message, (ii) the sender

and receiver IDs, and (iii) the time of transfer, are logged.

Theorem 3.5. The high level logs can be derived offline by aggregating low level logs.

Proof: IpLoд and OpLoд can be derived by aggregating the message contents in the low level logs.

IpLoдj (OpLoдj) can be derived by aggregating the contents of all messages sent from H toG (from

G to H) as part of a job j . Similarly,QoSLoд andQoELoд can be derived by aggregating the times of

transfer.QoSLoдj can be derived using the job request and the job response messages.QoELoдj can
be derived using the resource request and the resource response messages.

To ensure that the low level logs are not tampered, a low level auditing system, trusted by all

parties, is required on-chip. This system serves to perform audit at the level of messages transferred

from a sender to a receiver. The requirements of such a system is formally defined in Section 4,

followed by an intuitive construction of a solution. We then apply this solution in the SoC model

in Section 5, and present a detailed architecture.

4 AUDITING MESSAGES IN A SENDER-RECEIVER PARADIGM
4.1 The Problem
Consider two mutually distrusting nodes S and R connected by a single link that is assumed to

be non-faulty. S (the sender) performs some computation, and sends the result as a message to

R (the receiver). The message serves as an input to R, who begins computing after receiving the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 6 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:7

Fig. 2. Candidate solution: sender as auditor

message. Let us consider a single message transmission. Let the sender send messageMSGS at time

TS . Let the receive get the messageMSGR at time TR . If the receiver did not get any message, then

MSGR = TR = ϕ, and if the sender did not send any message, thenMSGS = TS = ϕ.
The auditing system has to produce a certificate C, that consists of (i) SC , the certified sender, (ii)

RC , the certified receiver, (iii)MSGC , the certified message contents, and (iv) TC , the certified time

of communication.

Definition 4.1. For the auditing system to be sound, it must guarantee the following four proper-

ties:

(1) Non-Repudiation: SC = S AND RC = R ⇒ The actual sender and receiver are certified.

(2) Integrity:MSGS = MSGR = MSGC ⇒ The message was received and certified as sent.

(3) Timeliness: |TS − TC | < τ AND |TR − TC | < τ , where τ is a predefined (small) positive

constant⇒ The actual (within a small margin of error) time of transfer is certified, and no

undue delay is induced between the sending and receipt.

(4) Atomicity: Either (((MSGS = MSGR = MSGC) , ϕ) ∧ ((TS ≈ TR ≈ TC) , ϕ)) OR ((MSGS =

MSGR = MSGC = ϕ) ∧ (TS = TR = TC = ϕ)). The message is either sent and received,

and certified and logged (and the corresponding times are approximately the same) or not

sent/received/certified and logged at all.

We derive these properties from non-repudiation research [23] that essentially deals with provid-

ing certificates to the sender and receiver of a message that allow them to prove to an adjudicator

that they sent and received the message respectively.

We now intuitively construct a sound auditing system.

4.2 Naive Solutions
4.2.1 The Parties Themselves do the Auditing. A possible solution is to have one party do the

auditing. Without loss of generality, let us assume the sender, S , does the auditing. In this strategy,

non-repudiation cannot be guaranteed as the sender may produce a certificate for a different SC (, S)
and RC (, R). Integrity cannot be guaranteed as the sender may produce the certificate for a message

different from that which was sent,MSGC , MSGS . Timeliness cannot be guaranteed either. The

certified times and actual times of sending/receiving the message must ideally be the same (see

Figure 2), i.e., TCS = TAS and TCR = TAR , to ensure timeliness. However, the sender may choose to

make the certified time of sending much lower than the actual time of sending TCS << TAS , thus
making it seem like it finished its work/computation much earlier. The sender may choose to make

the claimed time of receipt much lower than the actual time of receipt (TCR << TAR), thus making

it seem like R took longer to finish its work. Atomicity cannot be guaranteed either as S may not

produce certificates for messages it did send, and may produce certificates for messages it did not

send to R.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 7 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:8 R. Kalayappan et al.

Fig. 3. Candidate solution: parties audit themselves

Fig. 4. Candidate solution: TTP as a Mail Server Fig. 5. Candidate solution: DuoMeter

Another possible solution is to have each party audit itself. S and R both generate certificates

CS and CR respectively. Clearly, there is no way to ensure that the certificates are coherent. CS
and CR may certify different senders and receivers violating non-repudiation, and have different

message contents thus violating integrity. Figure 3 describes the issues with timeliness. CS may

certify TCS << TAS to make it appear that S finished its computation much earlier than it actually

did. CR may certify TCR >> TAR to make it appear that R spent lesser time computing than it

actually did. CS and CR may not be produced at all, or CS or CR may be produced for messages

that were not sent, violating atomicity.

Thus, having the parties audit themselves is not a sound auditing system.

4.2.2 Trusted Third Party(TTP) providing a Mail Service. Let us assume a Trusted Third Party

(TTP) organization that is trusted by all parties – the SI and all the 3PIP vendors. This TTP

organization designs meters that perform the necessary audit. Figure 4 shows how the meter can

be employed in a “mail-server” configuration. S sends the messageMSG toM at time t , requesting
it to forward it to R. Aside from forwarding the message,M produces a certificate C with SC = S ,
RC = R (non-repudiation), MSGC = MSG (integrity), and TC = t (timeliness). C is essentially a

cryptographic hash of (SC , RC ,MSGC , TC), made using a secret key known only toM , the trusted

third party. Thus, during an offline dispute, the TTP organization can verify if the certificates are

genuine.

Additionally, M produces C for every message that is sent to it by S , and also forwards the

message to R. It does not produce C for messages it did not receive. However, it is possible that

C (and the corresponding log) is discarded by S of R while resolving a dispute offline. To counter

this, we propose to employ a cryptographic system whose state (crypto-state) changes with every
round. The details of the encryption scheme we employ in our proposed implementation is given

in Section 5.2.2. In brief, the cryptographic key changes in a certain predefined way after each

round of encryption. Consequently, if the certificate of the kth message, Ck , is discarded during

an offline dispute, this can be detected. It will not be possible for any of the parties to read the

(k + 1)th message or verify Ck+1 without processing Ck .
It is difficult to employ this solution in SoCs where all vendors distrust each other, because it

requiresM to have direct (and reliable) links to both the sender and the receiver. The TTP provides

meter designs to the SI and 3PIP vendors in the form of soft IPs. The latter embed the meters in

their designs, thereby, making it impossible for a meter to have direct links to multiple parties.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 8 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:9

4.3 DuoMeter: Solution using Embedded Meters
In the DuoMeter scheme, trusted third party (TTP) meters are embedded at both S and R (see

Figure 5). S sends the messageMSGS intended for R to the TTP meter (MS) embedded in it at time

TS .MS encrypts (S,R,MSGS ,TS) using a secret key it shares withMR (receiver side trusted meter),

and sends the encrypted message to S .MS also produces a certificate CS , a hash of (S,R,MSGS ,TS)
produced using the same secret key. S then sends the encrypted message to R, who forwards it to

MR at time TR , claiming that it is a message from S . The latter decrypts the message MSGR and

sends it to R, who consumes it.MS also produces a certificate CR , a hash of (S,R,MSGR ,TR).
Non-repudiation: WhenMR decrypts the message, it verifies that (i) the sender ID in the message

matches the sender ID claimed by R, and (ii) the receiver ID in the message matches the ID of the

node it is embedded in.

Integrity: The message sent fromMS toMR (through S and R) is accompanied by a checksum, which

is essentially CS . If S or R tamper with the message after it is certified byMS , the verification of the

checksum atMR will fail. However, it is not possible to identify which of S or R or both modified

the message. This is similar to the last-link problem encountered in accountability solutions for

the Internet [9]. We term this attack as an irrational integrity attack. We use the word “irrational"

because S and R have no immediate gain from performing such an attack [24]. S cannot hide a

wrong computation by it by modifying the message after the CS was produced because CS was

produced on the message given by S to MS . Similarly, modifying the message does not help R
evade a wrong computation. R has no way of knowing at the time of communication (before it

sends toMR) whether the input will cause it to compute wrongly since the message is unreadable

(encrypted). The only motivation for S and R to perform such an attack is to bring down the

performance of the system as a whole through the penalties paid for recovering from the attack.

Timeliness: Recall that (TCS < TAS) is advantageous to S since this shortens the certified duration

of S’s computation. Similarly (TCR > TAR) is advantageous to R since this shortens the certified

duration of R’s computation. However, since S cannot modify the message after it is certified by

MS , S is forced to complete all its work before the CS is produced. Since the message is encrypted,

it has to be decrypted byMR before R can use the message. Thus R is forced to begin its work only

after CR is produced. Thus, neither S nor R can subvert the timeliness property to their advantage.

However, they may still perform an irrational timeliness attack similar to the irrational integrity

attack. The only effect of this will be to bring down the performance of the entire system. Now,

since the message received atMR contains the time of sending TS as well,MR can use this to check

if any undue delay was induced byTS , i.e., ifTR −TS > τ (τ is a predefined constant). Thus, just like

the irrational integrity attack, an irrational timeliness attack can be detected, but it is not possible to

find out who had inserted the delay (S or R).
Atomicity: It is possible that S or R drops the message after the CS is issued. This scenario can be

detected by the round-based crypto-system described in Section 4.2.2. All further communication

between S and R will fail if a message is dropped. Thus, an irrational atomicity attack can be detected.
This attack is an irrational one as well – neither S nor R serve to gain anything from doing this. And

just like the other two irrational attacks, the irrational atomicity attack can be detected but it cannot

be ascertained who the guilty party was. An attack where both the log and message are discarded

is also countered through employing a round-based crypto-system as described in Section 4.2.2.

Thus, the redundant metering solution is a sound auditing system. The identities of the sender

and the receiver, the contents of the message, the time of sending and the time of receiving can be

accurately certified. Atomicity is also guaranteed. All types of irrational attacks can be detected,

but the guilty party cannot be ascertained.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 9 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:10 R. Kalayappan et al.

Fig. 6. Authentic Low-Level Logs with the DuoMeter Auditing Scheme

The two certificates CS and CR are in a sense redundant since they certify the same features

of the message transfer (TS ≈ TR , if timeliness is not violated). However, having the certificates

generated at both S and R makes the storing of the certificates along with the logs in SoCs easier,

as discussed ahead in Section 5.2.1.

5 AUDITING IN 3PIP-CONTAINING SOCS
5.1 Implications of a Sound Audit
Theorem 5.1. If a sound audit can be provided at every on-chip interface between two mutually

untrusting parties, then accountability can be provided.

Proof: Low-level logs are collected by SI-designed loggers. These can be used to achieve high-level

logs, by Theorem 3.5. As mentioned previously, two guests never directly communicate with each

other. However, the guests communicate with the host. If the host is trusted by the guests, then

there is no on-chip interface between two mutually untrusting parties. If the host is not trusted,

and if a sound audit can be provided at every on-chip interface between the host and a guest, then

(i) the integrity, non-repudiation, and atomicity properties are necessary and sufficient to certify

the content of every message exchanged by H and G for a job j done by the latter, and hence to

provide IpCertj and OpCertj ,
(ii) the timeliness, non-repudiation, and atomicity properties are necessary and sufficient to

certify the times of transfer of every message exchanged by H and G for a job j done by the latter,

and hence to provide QoSCertj and QoECertj .
Since all four high-level certificates can be produced, and high level logs are collected (through

collecting low level logs, Theorem 3.5), accountability can be achieved, by Theorem 3.4.

5.2 Authentic Low-Level Logs with the DuoMeter Auditing Scheme
The TTP provides designs of the meter to the SI and the 3PIP vendors. The design of the meter is

discussed in Section 5.2.2. The SI and the 3PIP vendors embed the meters in their own designs, so

as to implement the DuoMeter auditing scheme at each host-guest interface, as shown in Figure 6,

thereby achieving accountability as per Theorem 5.1. The protocol followed by the host and the

guest circuitry to send a message to the other is discussed in Section 5.2.1. The overheads introduced

by the auditing process in discussed in Section 5.3.

5.2.1 Message sending protocol. The protocol is described in terms of “sender S” and “receiver R”,
rather than “host” and “guest”, as the protocol is symmetric for both host-to-guest and guest-to-host

communication. As required by the DuoMeter scheme, S has a TTP meter embedded in it, referred

to asMS . Similarly, R has a meter embedded in it, referred to asMR . The two meters share a secret

key state KS−R . The secret is embedded by the TTP at the time of design.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 10 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:11

Table 1. Message sending protocol

At the Sender
(S1) S → MS ⊙PT PT: plain text (the message)

(S2a) MS state_r eplay = XORKTT P (KS−R | |CTRS−R) key state is saved for replay support (Section 5.2.2)

(S2b) MS CT = ES−R (PT | |TS) CT, checksum, encoded state computed simultaneously

(S2c) MS checksum = CS _hash = HS−R (PT | |TS)
(S3a) MS → S ⊙MSGS = CT | |checksum

⊙TS TS : time of message sending

⊙CS = CS _hash | |stater eplay
(S3b) MS updates KS−R and CTRS−R
(S4a) S → R ⊙M
(S4b) S S stores <SEND,PT,R,TS ,CS>

At the Receiver
(R1) R → MR ⊙MSGR = CT | |checksumr ecv

(R2a) MR state_r eplay = XORKTT P (KS−R | |CTRS−R) key state is saved for replay support (Section 5.2.2)

(R2b) MR Ktemp = KS−R ; CTRtemp = CTRS−R temporary key state used during hashing

(R2c) MR DS−R (CT) ⇒ (PT , TS)
(R3a) MR → R ⊙PT
(R3b) MR updates KS−R and CTRS−R
(R4a) R uses PT

(R4b) MR checksumcomp = CR_hash = Htemp (PT | |TS)
(R5a) MR (checksumr ecv == checksumcomp)? integrity/atomicity check

(R5b) MR (TR −TS ≤ τ)? timing check (τ is a predetermined constant)

(R6) MR → R ⊙TS
⊙CR = CR_hash | |stater eplay

(R7) R R stores <RECV,PT,S,TS ,CR>
‘S ’: sender; ‘R’: receiver; ‘MS ’: meter at sender; ‘MR ’: meter at receiver;

‘ | |’: concatenation; subscript S − R : the key state shared between MS and MR is used;

KTT P : key shared between meter and the parent TTP organization

Steps with the same numbered prefix can execute simultaneously. For example, steps (S2a), (S2b) and (S2c) can execute

simultaneously. Similarly, steps (S3a) and (S3b) can execute simultaneously.

Table 1 describes the protocol followed to send a message from one on-chip component to

another.

S sends the message to be sent, PT , to the TTP meter embedded in it, MS . MS first prepares

a signed record of its current cryptographic state as state_replay. This signing is done with a

secret key shared betweenMS and the TTP, KTT P .MS computes a hash of the message contents

PT and the time of sending TS (current time atMS), as CS_hash.MS prepares the cipher text CT
by encrypting PT and TS . The encryption and the hashing are done using the shared key KS−R .
MS responds to S with the message ready to be transferred, MSGS – a concatenation of CT and

CS_hash. CS_hash serves as a checksum for integrity checking at the receiver.MS also sends the

certified time of sending TS .MS also sends the certificate of message sending CS – a concatenation

of CS_hash and state_replay. S then sendsM to R. If S is the host, it logs the message transfer as

<SEND, PT , R, TS , CS>.
R cannot begin using the messageMSGR , as it is encrypted. So it is forced to send it toMR .MR

first prepares a signed record of its current cryptographic state as state_replay, just as done inMS .

MR decrypts the message to obtain the original message PT , and the time of sending TS .MR sends

PT to R, who can now begin processing the message.

MR computes a hash of the decrypted message contents PT andTS , as CR_hash. If CR_hash does

not match the received checksum, then an integrity or atomicity error is inferred. If the time of

message receipt at R (current time atMR), TR , is much later than TS , then a timing error is inferred.

In the case of an error, the certificate of message receipt CR sent by MR to R attests the same. If

there was no error,MR sends R a concatenation of CR_hash and state_replay as the certificate of

message receipt CR .MR also sends the time of sending TS to R (note that TS was used to compute

CR_hash; also, if there was no timing error, then TR ≈ TS). If R is the host, it logs the message

transfer as <RECV, PT , S , TS , CR>.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 11 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:12 R. Kalayappan et al.

In the event of an error, a choice of operational policy exists. A simple mechanism is to have the

meter shut down until the TTP decides that the dispute is resolved offline, and remotely signals the

pair of meters to reset their cryptographic states to a common value. This serves as a deterrent to

the parties from performing irrational attacks, as the chip’s downtime reflects poorly on all parties.

5.2.2 Design of the Meter. As evident from the protocol, the solution utilizes cryptographic

techniques to both provide certificates and counter misbehavior attacks by the communicating

parties. Public key cryptography cannot be employed because hardware implementations take

too long to perform encryption/decryption. Additionally, they have a large area overhead as well

(Keija et al.[22] describes a hardware implementation of the RSA algorithm that occupies 0.014mm2

at 14nm and takes millions of cycles to encrypt a 1024-bit block). So we base our design on the

PRESENT block cipher [12], a symmetric technique.

Though the employment of cryptographic techniques in hardware constitutes an area overhead

(albeit meager, as elaborated in Section 5.3.2), we believe the achievement of the desirable prop-

erty of accountability justifies the added cost. There are a wide range of works [10, 25, 26] that

employ cryptography in SoCs to enable protocols that require different security properties such as

authenticity, privacy, and integrity.

Block Cipher. The PRESENT block-cipher is used to perform encryption. It works with an 80-bit

shared secret key. It takes 32 cycles to encrypt a 64-bit block. The parallelized implementation offers

a throughput of 1 block per cycle. It is extremely lightweight as well – the parallel implementation

occupies approximately 0.0065mm2
at 14nm technology (duly scaled according to [18]). PRESENT

is also highly resilient to cryptanalysis attacks. One of the reasons for its high resilience is that

the 80-bit key is updated after each round of encryption/decryption. In each round, the key is

left-rotated by 61 bits. The last five bits are then XOR-ed with the contents of a 5-bit counter that

is updated every round. The first four bits are passed through a substitution box (S-Box). It is

imperative for the “key state", that is the key value and the counter value, to be the same at the

sender and the receiver, for each communicated block of data. This essentially means that the same

number of blocks have to be decrypted as were encrypted. This property has two important uses:

first, ensuring the atomicity guarantee when messages are exchanged (see Section 4.3), and second,

ensuring that the SI does not drop logs (see Section 4.2.2).

Due to its superior performance, light weight and high resilience, the PRESENT cipher has

been incorporated in the international standard for lightweight cryptographic methods by the

International Organization for Standardization and the International Electrotechnical Commission.

Hash Function. The PRESENT block cipher can also be made to function as a one-way hash

function. The design follows the Davis-Meyer mode and is termed DM-PRESENT [12]. The hash

function is used to sign the CS and CR certificates, as well as produce checksums. The hash function

has the same throughput and latency as the base PRESENT block cipher.

Replay Support. Each TTP meter also shares a secret 85-bit key with its parent organization.

This key is used to encrypt the key state by a simple XOR operation. The encrypted state is also

part of the CS and CR certificates issued to S and R. This is required during the offline resolution of

a dispute. To verify the authenticity of a produced certificate, the TTP organization first decrypts

the encrypted key state using the secret 85-bit key. It then uses the key state to compute the hash

function of the claimed plain text and timestamp. The computed hash must match that in the

produced certificate.

Structure of the Meter. Figure 7 describes the block diagram of the meter. It has two modules of

the PRESENT block cipher, one for encryption/decryption and the other for hashing. The modules

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 12 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:13

Fig. 7. Meter design: Structural

Table 2. Meter area estimation at 14nm

Component Area Estimate
E/D block cipher 6500.000µm2

H block cipher 6500.000µm2

Logic 2699.452µm2

Verifier 119.737µm2

KTT P 86.995µm2

Key register 81.840µm2

Temp-Key register 81.840µm2

Timestamp 65.472µm2

XOR 51.144µm2

Counter register 5.115µm2

Temp-Counter register 5.115µm2

Total area 16196.710µm2

contain the 5-bit counters required by the protocol. An 80-bit register contains the key, while

another 80-bit register Temp-Key holds a copy of the key to be used for hashing (see step (R2b)

in Table 1). Similarly, a 5-bit register holds the counter value, and another 5-bit register Temp-Ctr
holds a copy to be used for hashing. An 85-bit register KTT P holds the secret key shared with

the TTP parent organization. An 85-bit wide XOR gate is used to encrypt the key state for replay

support. A 64-bit counter is used to provide the timestamp. A verifier module checks for irrational

integrity, timing and atomicity attacks. Note that the non-repudiation property is not explicitly

checked because in this design for every H -G interface, there is a unique pair of meters. A message

signed at the source meter cannot be understood by any meter other than the source’s pair meter,

who has the required key for decryption. Only a message that originated at the source can be

decrypted at the source’s pair meter, again for the same reasons. The TTP organization can uniquely

identify meters by KTT P , allowing for any attack on non-repudiation to be detected during the

offline investigation. The estimated area for a meter, synthesized with a 90nm ASIC library and

duly scaled to 14nm according to [18], is 0.016mm2
(see Table 2).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 13 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:14 R. Kalayappan et al.

Fig. 8. Meter design: Control

Meter Operation. The flow of control in the proposed meter design is elaborated in Figure 8. The

boxes with dashed lines are sub-tasks within a state. The sub-tasks are executed in parallel. All

sub-tasks complete before moving to the next state.

Tampering and Other Issues. The TTP meter design needs to be protected against tampering

by the parties: the SI and the third party vendors. This is an established field of research, with

many solutions proposed [16], and even standards established [3]. These are essentially based on

the principle of logic obfuscation. We will discuss one proposal: “FORTIS" [16]. The meter IPs are

accompanied by a cryptographic digest of the entire IP in their headers. The digest is computed

using a secret key shared between the TTP and the EDA companies, whose tools are employed by

the SI and the third party vendors (the EDA companies are also deemed trustworthy). When the SI

or third party vendor attempts to synthesize her design, the EDA tool computes the digest for the

embedded TTP meters. If a meter has been modified, the computed digest does not match that in

the IP header. The synthesis process then aborts.

A related issue is that the meters need to be embedded as prescribed by the TTP. Kalayappan et

al. [21] have proposed a method to ensure this.

A third issue is that of clock synchrony between the meter pairs, which again is an established

field of research [14].

5.3 Evaluating the Overheads of the Auditing Process
5.3.1 Performance Overhead of Auditing. Let us consider the sending of a 64-bit message. At

the sender side, the encryption (step (S2b) in Table 1) and providing of the CS (steps (S2a) and

(S2c)) are done in parallel. This takes 33 cycles. Taking into account the communication with the

meter (steps (S1) and (S3a)), the latency is 35 cycles. At the receiver side, the decryption takes 33

cycles (step (R2c)). The receiver can begin using the payload after it has been decrypted. Again,

the communication with the meter (steps (R1) and (R3a)) accounts for 2 cycles, giving a latency

of 35 cycles. Thus, the overall latency is 70 cycles for a 64-bit block. The checking for attacks,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 14 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:15

Table 3. Simulation parameters

Parameter Value Parameter Value

Cores 24 Microarchitecture Intel Sandybridge

Accelerators 24 Accelerator Types 6

Technology 14 nm

L3 cache 32MB (32 banks) Main Memory Latency 200 cycles

30 cycle latency

Topology 2-D Torus (10 × 10) Routing Alg. dyn XY routing

Flit size 8 bytes Hop-latency 1 cycle

Router-Latency 3 cycles

Table 4. Accelerator types and simulated workloads

Accelerator Type ASIC Implementation Workload Simulated
FFT [28] 4096-point FFT

Sort [32] Sort 3969 words

JPEG compression [27] Compress 640×480 pixel image

MD5 hashing [31] Hash 1 MB input

AES encryption [17] Encrypt 1 MB input

RSA encryption [22] Encrypt 1 kb input

and the production of the CR certificate constitute another 35 cycles, including 1 cycle for the

communication (step (R7)). But these 35 cycles are off the critical path.

However, the effect of this latency is almost completely masked in a real SoC. An SoC was

simulated using the cycle accurate Tejas simulator [30]. Table 3 gives the details of the simulated

chip. It contains 24 3PIP accelerators – 4 accelerators of each type listed in Table 4. All other

components of the chip such as general purpose cores, shared caches and the NoC are designed

by the host. Every communication between the host and an accelerator has to be audited. Each

accelerator was made to perform a task, as described in Table 4. The auditing resulted in a mere

0.49% average overhead in terms of the time taken for an accelerator to complete its job. The

reason for this miniscule overhead is threefold: (i) the auditing system is fully pipelined, allowing a

throughput of 64 bits/cycle, (ii) computation time accounts for a significant fraction of the runtime of

an accelerator, (iii) there is considerable overlap between the computation and the communication,

effectively masking the overhead induced by auditing. The tasks that are typically accelerated have

statically determinable access patterns, and are thus amenable to prefetching, further reducing the

overhead.

Additionally, the latency of 70 cycles is in the same order as that of regular packet transfer in

modern SoCs. For example, in the considered chip, with a 10 × 10 layout of routers, a flit sent from

one end of the chip to the other takes 80 cycles. This is in the base system without any auditing

being performed. Thus, we believe designing a real time system accommodating the audit latency

does not stretch the designer a great deal. Especially when the throughput of the auditing system

is the same as that of the NoC. Thus, we believe the constraint induced in designing SoCs with

cores tightly integrated to push the chip at its limit in terms of performance, is not too large.

Regarding real-time systems, no great complication is introduced by the auditing process. This is

because there is no additional source of non-determinism being introduced – the number of cycles

taken to audit a 64-bit flit is always exactly 70 cycles, and the throughput is always exactly 64 bits /

cycle. Since there is no non-determinism, the designer can provide hard real time guarantees.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 15 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:16 R. Kalayappan et al.

Since the proposed meter design offers a throughput of only 64 bits per cycle, the audit system

can slow communication down in chips with NoCs offering a greater bandwidth. This problem

can be alleviated by using a more powerful meter. Suppose the NoC link bandwidth is 128 bits per

cycle. Then our meters can be provided with four PRESENT modules instead of two. Two modules

perform encryption/decryption, and work on alternate input blocks. Similarly, twomodules perform

hashing, and work on alternate blocks, and XOR their outputs to produce the final hash. This gives

us a meter capable of auditing at the rate of 128 bits per cycle.

5.3.2 Area and Power Overhead of Auditing. Considering the chip described in Table 3, a total of

48 meters are required – a pair of meters at each host-guest interface. Assuming a reference die size

of 400mm2
, the meters constitute an area overhead of 0.194%. Note that the DuoMeter approach

scales linearly with increasing number of third party components. For every third party component,

exactly two meters have to be placed at its interface with the host. In terms of power, 0.99µW is

consumed for auditing each 64-bit transfer. The PRESENT cipher modules consume the majority of

the energy. Even if all the 3PIPs are simulataneously communicating, the power consumed will be

24µW , which is next to negligible.

6 ECONOMICAL LOGGING
A certified logging of every message exchanged between modules designed by two mutually

untrusting parties guarantees accountability. Thus, in principle, every kind of malfunction and

malicious attack can be detected. However, this requires infinite logging bandwidth and storage

space, so as to not have any performance or storage overhead (note that the overhead of generating

the required certificates is negligible, as demonstrated in Section 5.3.1). Fortunately, this is a

well-studied problem in the domain of post-silicon validation. We shall use similar techniques.

The different techniques of reducing the logging result in different performance and storage

overheads, and may constrain which malfunctions may be detected. Let us discuss these overheads.

We envision design-for-debug (DfD) structures being re-used [19] to store the logs and certificates

on-chip. When the buffers fill up, they may be written to off-chip disks. This writing constitutes

two overheads: storage – the space occupied in the disks, and time – the time to save the logs (the

off-chip writing consumes resources that could have otherwise been used for performing the chip’s

primary functionality). Reducing the logging reduces both the storage and the time overheads.

The TTP meters need to be more sophisticated to support these techniques (discussed later in this

Section), adding to the on-chip space overhead.

A technique must be chosen depending upon the module being covered, and the kind of account-

ability desired. We will briefly describe the different techniques here. We will also demonstrate

the usage of some of the techniques while detecting real malfunctions derived from the errata

documents of real SoCs in Section 7. Thoroughly evaluating all the techniques is beyond the scope

of this paper.

Temporal Summarization: In its simplest form, it involves performing the dumping only

when the chip malfunctions. If a log needs to be written and the buffer is full, the oldest entry is

over-written. This results in the most recent messages exchanged before the malfunction being

available for the offline dispute resolution, which may be sufficient in many cases [13].

On-chip monitors may be employed [13, 15] that turn the logging on and off based on the

occurrences of events. Domain-specific rules may be encoded in these monitors that observe

relevant signals to detect events of interest.

A sampling-based approach may be employed to log only some of the jobs performed by a

module, rather than logging them all. This may satisfy scenarios where a statistical study of the

quality of operation is desired.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 16 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:17

Spatial Summarization: Not all bits of the message may be relevant for debugging. Domain

knowledge can help prune the fields of less interest to reduce the size of the logs [13].

Compression: Again, as done in post-silicon validation [11], compression techniques may be

employed to reduce the size of the logs before dumping them off-chip. Chandran et al. [13] have

demonstrated that the techniques of summarization and compression together can reduce the

logging by up to 80%.

Hashing: The entire message contents, though useful while recreating the malfunction offline,

are not always necessary. Just the hash of the message contents is sufficient. Our approach is

inspired by the idea of inner state hashes, proposed to detect malicious contractors in the cloud

domain [24].

We will consider a simplified model of execution on an SoC for the purpose of explaining the

proposal. The simplifications are not necessary for the proposal to work. Let the SoC be composed

of N modules M1,M2, ...,MN . Let a module Mi perform functionality Fi , accepting one or more

inputs and producing one or more outputs. The customer’s application that runs on the SoC is a

task-graph, where each task is one of the aforementioned functionalities. The outputs of a parent

node form the inputs of its children nodes.

We will also restrict this discussion to only functionality-related malfunctions, and not timing-

related ones, though the methodology can be applied for timing-related malfunctions as well.

At run-time, as part of the accountability framework, the inputs and outputs of each module are

hashed by Trusted Third Party (TTP) circuitry, and the hashes are logged. Kupcu [24] terms these

“Inner State Hashes”, as they capture intermediate results of the application, rather than the just

the final result. The hashes don’t require much storage or off-chip bandwidth as they are small,

possibly 64-bit long for each datum (input or output).

If the SoC malfunctions, the following procedure is followed to detect the responsible module

offline.

• Set-up: The customer submits the application (code and data), and the logged hashes to the

arbitrating authority. The system integrator (SI) submits the SoC design. The 3PIP vendors

submit hashes of their designs. These are used to verify if the 3PIP designs are incorporated

without any tampering [16].

• Localizing the Faulty Module: Each node in the task-graph is then re-executed and verified, in

topological order, observing dependencies [24], as follows:

– Let the functionality of the current node be Fcur , and the module performing the function-

ality beMcur . Let the set of inputs to the node be {i1, i2, ...}. Note that the inputs have been
verified to be correct – no error has yet been detected up till this point.

– The customer, the SI, and the designer ofMcur (if different from the SI), agree upon what

the ideal result of executing Fcur (i1, i2, ...) should be: {oideal
1
,oideal

2
, ...}.

– Fcur (i1, i2, ...) is then computed using the design for Mcur , either in a simulator, or by

writing the design on an FPGA. Let the result be {oof f l ine
1

,o
of f l ine
2

, ...}. These results are
then compared with the ideal result. That is, ∀i,oof f l inei == oideali ?. If the equality does

not hold for even one output, then there is a deterministic bug in Mcur that could have

caused the chip’s malfunction. The offline analysis ends for this node, marksMcur guilty,

and also does not explore the children of this node in the task-graph. If the equality holds

for all outputs of Mcur , then no deterministic bug exists in Mcur that could have caused

the malfunction. The analysis continues.

– A hash of the ideal outputs is computed as Hideal . Let the hash of the outputs ofMcur that

was logged at runtime, that is the inner state hash, be Hruntime . As proposed by Kupcu [24],

the hashes are compared for equality: Hideal == Hruntime? If the hashes are equal, then

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 17 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:18 R. Kalayappan et al.

no non-deterministic bug was triggered at runtime. However, if the hashes are not equal,

then some non-deterministic bug was triggered at runtime, that could have caused the

malfunction. The offline analysis marksMcur guilty, and does not proceed to analyze the

children of this node in the task-graph.

As an example, if we employ such a scheme with a JPEG compression accelerator, the entire

input raw image (640 × 480 pixels) of 7372800 bits need not be logged. A 64-bit hash of the image

will suffice, reducing the size of the log to a mere 0.0008%.

Histograms: The transfer time of each and every message may also not always be required.

Application-specific mechanisms of aggregating this information are possible. For example, let

us again consider the input to a third party JPEG compression accelerator. The input raw image

(640 × 480 pixels) arrives at the accelerator as multiple messages (1800 messages, assuming band-

width of 64 bytes). Instead of saving the transfer time of each message, a histogram of the transfer

times may be sufficient to describe the QoE enjoyed by the accelerator [21]. Assuming a histogram

of 16 buckets, each 11-bits wide (to accommodate the maximum of 1800), the time logs can be

reduced to a mere 1.04%.

Note that the techniques to reduce the logging have to be implemented with support from the TTP

meters. This ensures that they do not affect the authenticity of the logs in any way. For example, let

us consider employing histograms to capture the QoS of a JPEG accelerator, and the QoE of the host.

The TTP meters provide a sound audit for each message, guaranteeing non-repudiation, integrity,

timeliness, and atomicity of the message transfer. However, instead of providing a certificate, or

hash, for the transfer time of each message, the meter in the host maintains two histograms –

one for the guest’s QoS, and one for the host’s QoE [21], and provides these histograms along

with certificates at the end. Offline dispute resolutions now operate in terms of the histograms

rather than individual requests and responses, which may suffice for many scenarios. The meters

consequently need to be more sophisticated, adding to the area overhead. They do not add to the

performance overhead however, as the techniques function off the critical path.

7 OFFLINE FAULT LOCALIZATION
We demonstrate the viability of our proposal using some bugs and defects, as is the standard

practice in the field of post silicon validation and security [13]. We consider three bugs, deriving

our examples from the published errata documents of widely used commercial SoCs [1, 2, 6].

7.1 Bug I
Microsemi’s (SI) SmartFusion2 M2S050 SoC [6] has an embedded ARM Cortex-M3 core (3PIP). The

ARM core makes memory requests to the SI-provided cache controller through two buses: I-bus for
instructions, and D-bus for data. Now if the I-bus and the D-bus are concurrently accessed, then an

erroneous value may be returned.

Let us elaborate our scenario with certain notations and assumptions (see Figure 9). Let us

denote the ARM core as Ma . Let us assume that an SI-provided controller module (Mc) directs

the different modules on chip.Mc directsMa to execute a certain program present in a certain

address range in memory, Ap . Ma gets its inputs also from memory at the address range, Ai . Ma
writes the result of its execution, which we will assume is a single word, at Ao .Ma makes many

accesses to the memory through the SI-provided cache controller, which we will denote as Mf
(the faulting module), for both instructions and data. To keep the discussion simple, let us assume

that the only communication thatMa makes with the rest of the chip as part of its execution of

the specified program are accesses to the memory throughMf . Once Ma completes its task and

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 18 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:19

Fig. 9. Bug I Scenario

writes the result to Ao , it signalsMc . Let us assume thatMa ’s output is to be consumed by the

on-chip module Mo (3PIP) that then communicates the result off-chip. OnceMc receives the task

completion signal from Ma , it reads the word at Ao , and directs Mo to communicate the word

off-chip.Mo encodes the data according to the off-chip channel and sends it.

Offline Detection with Complete Logging: Beginning with the incorrect result of the chip, we

work backwards.

• We first analyze the functioning of Mo . All input messages to Mo , and output messages

fromMo are logged. Thus, the directions and the datum word received fromMc , and the

encoded word sent on the channel are available. We verify whether the encoded output data

corresponds to the input provided, with respect to the directions given. Since the verification

succeeded, we can conclude thatMo is not to blame for the chip’s incorrect output.

• We then verify if Mc gave the right directions to Mo . We also verify if the datum word

communicated by Mc to Mo is the same that was written by Ma at the end of its execution.

We can do this by looking up the last write request made byMa toAo . Since the verifications

succeed, we conclude that this phase of Mc ’s operation did not cause the chip’s incorrect

output.

• We then verifyMa ’s functioning. We find that executing the program at Ap , with the inputs

at Ai , gives a result different from that stored byMa at Ao at the end of its execution. Thus,

Ma may be the module responsible for the faulty output.

Ma communicates with Mf as part of its operation. We then verify this communication.

The logs contain all requests made by Ma , and all responses sent by Mf . We verify if all

read requests made byMa were serviced with the latest values at those addresses. For all

addresses that are written to byMa , we verify that subsequent read requests returned the

value last written by Ma . During this verification, we find that for some requests, invalid

values were returned by Mf . Hence, we cannot hold Ma responsible for the chip’s incorrect

output. Instead, we conclude thatMf is the module responsible.

Logging using Inner State Hashes: If we follow the method of logging only Inner State Hashes,
as detailed in Section 6, the amount of storage required to save logs can be greatly reduced. For

each task, and for each pair of communicating modules, only one 64-bit hash needs to be saved.

Thus, one hash each is logged for:

• Output messages ofMo

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 19 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:20 R. Kalayappan et al.

• Input messages (data and control) toMo fromMc
• Output messages ofMa toMc , signaling the completion of the task

• Cache requests made byMa toMf as part of executing the program

• Cache responses fromMf toMa
• Input messages (control) toMa fromMc to start the former’s execution of the program

In total, 384 bits need to be stored to enable detection of this bug. An additional 85 bits per hash

needs to be stored as replay support (Section 6.2.3 in the main document). The total amounts to 894

bits.

7.2 Bug II

Fig. 10. Bug II Scenario

Texas Instruments’ (SI) CC2538 SoC [1] has an embedded USB controller, which we assume for

this discussion to be third-party provided (3PIP). Now if this controller is servicing a transfer of

packets of type DATA1 to deviceA, and the host wishes to read from another device B, the controller
may begin sending NAK packets to other communicating USB devices.

Let us elaborate our scenario with certain notations and assumptions (see Figure 10). Let us

denote the faulting USB controller module asMuc . The customer has an array of USB devices, that

are accessed by the host (the SoC), through Muc . Let the host request for a data transfer from a

USB deviceUi . Let a USB deviceUo have a data transfer to it be prematurely terminated due to

the spurious NAK packets emanating fromMuc .

Offline Detection with Complete Logging: The analysis begins from the disruption of the

transfer toUo , as recognized by the customer.

• The first module analyzed is Muc , as it is the chip’s interface to the USB devices. Analysis of

the logs reveals the NAK packet that terminated the USB transfer toUo (note that NAK packets
are handshake packets, which are logged completely). Since the logs reveal that the NAK
packets originated fromMuc , it may be the module responsible for the chip’s malfunction.

• All input messages toMuc are analyzed to see if any input packet could have caused it to

send the spurious NAK packet. The payload of data packets is not required for this analysis.

Finding no such messages, we conclude thatMuc is the module responsible for the premature

termination of the USB transfer toUo .

Logging using Summarization: Let us assume that the “spatial summarization” and the “temporal

summarization” techniques are used to reduce the logging ofMus ’s communication. All control

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 20 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

Providing Accountability in Heterogeneous Systems-on-Chip 1:21

packets (token, handshake, and special) to/from Mus are logged. For data packets, only the header

information is stored, and not the payload. Let an on-chip trace buffer of 1kB be used to store the

logs.

Table 5 shows the number of bits required to store the log of each packet type.

Table 5. Logging different packets related to the USB protocol

Stream Description Log Certificate Total (bits)

Stream toUo DATA1 packet 64 + 85 160

4-bit PID, 7-bit addr

Request to read fromUi IN packet 64 + 85 164

4-bit PID, 7-bit addr, 4-bit ENDP

NAK disrupting stream toUo NAK packet 64 + 85 160

4-bit PID, 7-bit addr

The collected logs are stored in the trace buffer. If the trace buffer is found full, the oldest entry is

cleared to make space for the new entry (temporal summarization). When a malfunction is detected,

the contents of the trace buffer is dumped off-chip for analysis. Thus, at the time of the malfunction,

the trace buffer contains logs of the (at least) 49 most recent packets processed byMus (considering

a 1kB trace buffer). Any packet that could have causedMuc to produce a legal NAK must be present

among the logs. It is highly unlikely that such a packet was received at Muc more than 49 packets

ago.

7.3 Bug III

Fig. 11. Bug III Scenario

NXP’s (SI) MCIMX31 SoC has a bug [2] associated with the Wireless External Interface Module

(WEIM) (3PIP), the NAND Flash Controller (NFC) (3PIP), and the data bus (SI). The WEIM and

the NFC have a special handshake logic allowing them to share the data bus. This logic can stall

making the bus inaccessible to all parties, if the WEIM access starts at a particular state of the

NFC’s state machine.

Let us elaborate our scenario with certain notations and assumptions (see Figure 11). Let the

WEIM module be denoted by Mw . Let the NFC module be denoted by Mn . Let the data bus be

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 21 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

1:22 R. Kalayappan et al.

denoted by Md . Mn and Mw communicate with the external off-chip world. They also communi-

cate to the other modules on chip throughMd . LetMw andMn accessMd in the fault inducing

way, as described above. This is externally observed as stalled and/or inaccessible NAND Flash,

wireless and possibly other interfaces as well.

Offline Detection with Complete Logging: We begin with the non-responsive NAND Flash

and wireless interfaces.

• We analyze the messages input toMn andMw off the chip, and find that they abruptly stop.

• We then analyze the exchanges between Mn and Mw and the data bus Md . We find that

the handshake protocol betweenMn andMw had begun, but did not end.

• We analyze other messages received by Md from other modules, and find them in order.

We thus, localize the fault to these modules: Mn , Mw , and Md . The messages exchanged

between them that led to the stall, including the timing information, are available. The

scenario can therefore be recreated in an offline simulation.

Logging using Summarization: Let us assume the “temporal summarization” and “spatial sum-

marization” techniques are used to reduce the amount of logging. Let us assume that there are

separate trace buffers of size 1kB each associated withMn ,Mw , andMd , named Tn , Tw , and Td
respectively. Control packets are completely stored, while only the header information is stored for

data packets. Let us assume that 8 bits are sufficient to store the required information in all cases.

Further, timestamps are stored as 8-bit fields.

Thus, with 16-bit message logs, each requiring 149-bit certificates (including replay support), Td
can store the last 49 control messages sent to/fromMd . This is sufficient to demonstrate that the

bug is localized to the modulesMd ,Mn , andMw . Enough information is available to conclude that

the handshake protocol did not complete. Older messages are not required. Similarly, the last 49

messages received at each of Mn and Mw are available in the trace buffers Tn and Tw respectively.

This is sufficient to recreate the bug during offline simulation for further analysis.

8 CONCLUSION
Providing accountability in SoCs containing components from different vendors is of great industrial

importance. In this work, we proved that accountability can be provided if authentic logs of every

message exchanged between on-chip components designed by different organizations are available

for offline analysis. We then devised a solution based on this insight, by employing a trusted

on-chip auditing system that authenticates the logs. We then presented a thorough design of this

solution, and demonstrated that its overheads are quite modest. We also showed how the overhead

of logging can be reduced by employing techniques from the post-silicon validation domain. We

also demonstrated the viability of our proposal using bug scenarios encountered in commercial

SoCs. We believe that this work can serve as a starting point for a vast number of ideas to achieve

accountability using different approaches, under different constraints, achieving various degrees

of accountability, and incurring different costs in terms of performance, chip area, and off-chip

storage.

REFERENCES
[1] 2013. CC2538 Errata Note. http://www.ti.com/lit/er/swrz045a/swrz045a.pdf.

[2] 2013. MCIMX31 andMCIMX31L Chip Errata. http://www.nxp.com/assets/documents/data/en/errata/MCIMX31CE.pdf.

[3] 2014. IEEE Recommended Practice for Encryption and Management of Electronic Design Intellectual Property (IP).

https://standards.ieee.org/findstds/standard/1735-2014.html.

[4] 2014. SoC Integration Mistakes. http://semiengineering.com/experts-at-the-table-soc-integration-mistakes/.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 22 of 23Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

http://www.ti.com/lit/er/swrz045a/swrz045a.pdf
http://www.nxp.com/assets/documents/data/en/errata/MCIMX31CE.pdf
https://standards.ieee.org/findstds/standard/1735-2014.html
http://semiengineering.com/experts-at-the-table-soc-integration-mistakes/

Providing Accountability in Heterogeneous Systems-on-Chip 1:23

[5] 2016. Blue Gecko SoC (EFR32BG1) Errata. http://www.silabs.com/Support%20Documents/RegisteredDocs/

efr32bg1-errata.pdf.

[6] 2016. ER0195 Errata SmartFusion2 M2S050 (T,TS). https://www.microsemi.com/document-portal/doc_view/

135069-er0195-smartfusion2-soc-m2s050-t-ts-errata.

[7] 2016. Xilinx Zynq-7000 AP SoC Production Errata. https://www.xilinx.com/support/documentation/errata/en247.pdf.

[8] Miron Abramovici and Paul Bradley. 2009. Integrated Circuit Security: New Threats and Solutions. In CSIIRW.

[9] Katerina Argyraki, Petros Maniatis, Olga Irzak, Subramanian Ashish, and Scott Shenker. 2007. Loss and delay

accountability for the Internet. In ICNP.
[10] Jerry Backer, David Hely, and Ramesh Karri. 2016. Secure and Flexible Trace-Based Debugging of Systems-on-Chip.

ACM TODAES (2016).
[11] Kanad Basu and Prabhat Mishra. 2011. Efficient trace data compression using statically selected dictionary. In IEEE

VTS.
[12] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew JB Robshaw, Yannick

Seurin, and Charlotte Vikkelsoe. 2007. PRESENT: An ultra-lightweight block cipher. In CHES.
[13] Sandeep Chandran, Preeti Ranjan Panda, Smruti R Sarangi, Ayan Bhattacharyya, Deepak Chauhan, and Sharad Kumar.

2017. Managing Trace Summaries to Minimize Stalls During Postsilicon Validation. IEEE TVLSI (2017).
[14] B. Couillard. 2002. Method and apparatus for synchronizing real-time clocks of time stamping cryptographic modules.

[15] Kees Goossens, Bart Vermeulen, Remco Van Steeden, andMartijn Bennebroek. 2007. Transaction-based communication-

centric debug. In NOCS.
[16] Ujjwal Guin, Qihang Shi, Domenic Forte, and Mark M. Tehranipoor. 2016. FORTIS: A Comprehensive Solution for

Establishing Forward Trust for Protecting IPs and ICs. ACM Trans. Des. Autom. Electron. Syst. (2016).
[17] Panu Hamalainen, Timo Alho, Marko Hannikainen, and Timo D Hamalainen. 2006. Design and implementation of

low-area and low-power AES encryption hardware core. In DSD.
[18] Wei Huang, K. Rajamani, M.R. Stan, and K. Skadron. 2011. Scaling with Design Constraints: Predicting the Future of

Big Chips. Micro (2011).
[19] Neetu Jindal, Preeti Ranjan Panda, and Smruti R. Sarangi. 2017. Reusing trace buffers to enhance cache performance.

In DATE.
[20] Rajshekar Kalayappan and Smruti R Sarangi. 2013. A survey of checker architectures. ACM CSUR (2013).

[21] Rajshekar Kalayappan and Smruti R Sarangi. 2015. SecX: A Framework for Collecting Runtime Statistics for SoCs with

Multiple Accelerators. In ISVLSI.
[22] Zhu Keija, Xu ke, Wang Yang, and Min Hao. 2003. A novel ASIC implementation of RSA algorithm. In ASIC.
[23] Steve Kremer, Olivier Markowitch, and Jianying Zhou. 2002. An intensive survey of fair non-repudiation protocols.

Computer communications (2002).
[24] A. Kupcu. 2015. Incentivized Outsourced Computation Resistant to Malicious Contractors. IEEE Transactions on

Dependable and Secure Computing (2015).

[25] Chung-Wei Lin, Bowen Zheng, Qi Zhu, and Alberto Sangiovanni-Vincentelli. 2015. Security-Aware DesignMethodology

and Optimization for Automotive Systems. ACM TODAES (2015).
[26] Philipp Mundhenk, Andrew Paverd, Artur Mrowca, Sebastian Steinhorst, Martin Lukasiewycz, Suhaib A. Fahmy, and

Samarjit Chakraborty. 2017. Security in Automotive Networks: Lightweight Authentication and Authorization. ACM
TODAES (2017).

[27] M. Papadonikolakis, V. Pantazis, and A.P. Kakarountas. 2007. Efficient High-Performance ASIC Implementation of

JPEG-LS Encoder. In DATE.
[28] Yongjun Peng. 2003. A parallel architecture for VLSI implementation of FFT processor. In ASIC.
[29] Resve Saleh, SteveWilton, Shahriar Mirabbasi, Alan Hu, Mark Greenstreet, Guy Lemieux, Partha Pratim Pande, Cristian

Grecu, and Andre Ivanov. 2006. System-on-chip: Reuse and integration. Proc. IEEE (2006).

[30] Smruti R Sarangi, Rajshekar Kalayappan, Prathmesh Kallurkar, Seep Goel, and Eldhose Peter. 2015. Tejas: A java based

versatile micro-architectural simulator. In PATMOS.
[31] A. Satoh and T. Inoue. 2005. ASIC hardware focused comparison for hash functions MD5, RIPEMD-160, and SHS. In

ITCC.
[32] N. Tabrizi and N. Bagherzadeh. 2005. An ASIC design of a novel pipelined and parallel sorting accelerator for a

multiprocessor-on-a-chip. In ASIC.
[33] Bart Vermeulen. 2008. Functional debug techniques for embedded systems. IEEE Design & Test of Computers 25, 3

(2008), 208–215.

Received September 2017; revised March 2009; accepted June 2009

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Page 23 of 23 Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs

http://www.silabs.com/Support%20Documents/RegisteredDocs/efr32bg1-errata.pdf
http://www.silabs.com/Support%20Documents/RegisteredDocs/efr32bg1-errata.pdf
https://www.microsemi.com/document-portal/doc_view/135069-er0195-smartfusion2-soc-m2s050-t-ts-errata
https://www.microsemi.com/document-portal/doc_view/135069-er0195-smartfusion2-soc-m2s050-t-ts-errata
https://www.xilinx.com/support/documentation/errata/en247.pdf

